ответ:
v = 5√3/6 ед³.
sбок = 144 ед².
объяснение:
судя по тому, что ∠авс= 120°, параллелепипед не прямоугольный, а прямой. это "две большие разницы".
итак, высота параллелепипеда равна 9см, а в основании прямого параллелепипеда лежит параллелограмм со стороной вс = 5 см, диагональю ас=7см и углом авс = 120°. по теореме косинусов попробуем найти сторону ав.
ас² =ав²+вс² - 2·ав·вс·cos120. cos120 = -cos60 = - 1/2.
49 = ab²+25 - 2·ab·5·(-1/2) =>
ав²+5·ав -24 =0 => ab = 3cм
so = ab·bc·sin120 = 3·5·√3/2.
v = so·h = (3·5·√3/2)·9 = 5√3/6 ед³. (площадь основания, умноженная на высоту).
sбок = р·h = 2(3+5)·9 = 144 ед² ( периметр, умноженный на высоту)
По условию:AB=16 дм;AC:BC=5:3.
Найти:Длины отрезков,которые будут меньше длины отрезка BC.
Решение: Найдем для начала длины отрезков AC и BC.На рисунке я их нашел уравнением.Пускай AC будет 5х,а BC 3x.В итоге у нас получится AC=10 дм,а BC=6 дм.Но в условии нас просят найти отрезки меньше длины BC.Поэтому мы делим отрезки AC и BC.В итоге, мы получаем:AK,KC,CD,BD.Чтобы найти AK,я поделил AC на 2,т.к K - средняя линия AC.Тогда KC=AK=5 дм.Такие же действия проделываем и с BC.И мы получим BD=CD=3 дм.
ответ: BD=3 дм,СD=3 дм,AK=5 дм,KC=5 дм
Поделитесь своими знаниями, ответьте на вопрос:
Сторона основания правильной треугольной пирамиды равна 6 см а ее высота 5 корней из 3 вычислить объем пирамиды
Sосн = a²√3 / 4 (площадь правильного треугольника)
Sосн = 36√3 / 4 = 9√3 (см²)
V = 1/3 · 9√3 · 5√3 = 45 см³