а) ∆АВС - рівнобедрений (АВ = ВС).
Нехай зовнішній кут 130° - це кут при вершині.
∟DBC = 130°, тоді ∟DBC = ∟A + ∟C.
∟A + ∟C = 130°. ∟A = ∟C = 130° : 2 = 65° (кути при ocнові).
∟B = 180° - ∟DBC. ∟B = 180° - 130°; ∟B = 50°.
Biдповідь: 65", 65°, 50°.
б) ∆АВС - рівнобедрений (АВ = ВС).
Нехай зовнішній кут 130° - це кут при основі ∟BCD = 130°,
тоді ∟BCD + ∟BCA = 180°.
∟BCA = 180° - 130° = 50°; ∟BCA = ∟BAC = 50°
(кути при ocновi рівнобедреного трикутника).
∟BAC + ∟BCA + ∟B = 180°.
∟B = 180° - (50° + 50°) = 180° - 100° = 80°.
Biдповідь: 50°, 50°, 80°.
ответил 08 Янв, 17 от discere
Т.к. АС диаметр, то вписанные углы АВС и АDC, которые на него опираются равны 180:2=90град.
Треугольники АВО и ADО равносторонние, их стороны равны радиусу, значит и углы равны 180:3=60град., следовательно углы BAO и DAO равны 60град., т.е. угол BAD равен 60·2=120град. Угол BСD=180-120=60град. (Сумма углов четырёхугольника равна 360град.)
Углы BCA и DCA равны по 30град. (90-60=30 свойство углов прямоугольного треугольника) и являются вписанными в окружность, следовательно дуги на которые они опираются AB и AD равны 30·2=60град.
Дуги BC и CD так же в 2 раза больше вписанных углов BAC и DAC, которые на них опираются, т.е. 60·2=120град.
ответ: Углы четырёхугольника ABCD равны 120; 90; 60; 90 град. Дуги АВ и CD - 60град., дуги BC CD по 120град.
Поделитесь своими знаниями, ответьте на вопрос:
Находим радиус r вписанной окружности.
r = √((p-a)(p-b)(p-c)/p).
Полупериметр р = (6+10+14)/2 = 30/2 = 15 см.
r = √((9*5*1)/15) = √3 см.
Находим апофему А:
А = r/cos α = √3/cos 30° = √3/(√3/2) = 2 см.
Sбок = (1/2)РА = (1/2)*30*2 = 30 см².