1) если в основании прямоугольник со сторонами а и в, площадь боковой поверхности равна 2(a + b) * c = 2 *10 * 3 = 60 /см²/; площадь полной поверхности = S(бок) + 2S(осн) = 60 + 2 *6 * 4 = 60 + 48 = 108/ см²/
2) Если в основании прямоугольник со сторонами а и с, то площадь боковой пов. равна 2(a + с) * в=2*9*4=72/см²/ ; площадь полной поверхности = S(бок) + 2S(осн) 72+2*6*3=108/см²/,
3) если в основании прямоугольник со сторонами в и с, площадь боковой поверхности равна 2(в + с) * а = 2 * 7 * 6= 84/см²/; площадь полной поверхности = S(бок) + 2S(осн) = 84 + 2 *4 *3 = 84 + 24 = 108/ см²/
Конечно, площадь полной поверхности не менялась оттого, что мы меняли основания.
Поделитесь своими знаниями, ответьте на вопрос:
Дан треуг. abc , вписанный в окр. (o; r найти углы треуг. abc если дуга bc = 80°, дуга ab÷ дугу ac = 4÷3
Углы вписанного в окружность треугольника - вписанные. Вписанный угол измеряется половиной дуги, на которую он опирается.
Полная окружность содержит 360°.
◡ВАС=360°-80°=280°
АВ:АС=4:3
Примем коэффициент этого отношения равным х.
Дуга ВАС состоит из ◡АВ+◡АС и равна .
4х+3х=7х
х=280°:7=40° – содержит каждая часть ◡ВАС
◡АС=3•40°=120°
◡АВ=4•40°=160°
Угол А опирается на дугу ВС и равен ее половине:
∠А=80°:2=40°
Угол В опирается на дугу АС и равен ее половине:
∠В=120:2=60°
Угол С опирается на дугу АВ и равен ее половине:
∠С=160°:2=80°