AA₁ = 9 см
ВВ₁ = 12 см
СС₁ = 15 см
Объяснение:
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим ОА₁ - х, тогда ОА = 2х,
ОВ₁ = у, тогда ОВ = 2у.
Из двух прямоугольных треугольников АОВ и АОВ₁ составим уравнения по теореме Пифагора.
4x² + 4y² = 100
4x² + y² = (2√13)² = 52
Вычтем из первого уравнения второе:
3y² = 48
y² = 16
y = 4
4x² = 100 - 4y²
x² = 25 - y²
x = √(25 - 16)
x = 3
AA₁ = 3x = 9 см
ВВ₁ = 3у = 12 см
ОС₁ - медиана прямоугольного треугольника АОВ, проведенная к гипотенузе, значит равна ее половине:
ОС₁ = 1/2 AB = 5 см
СС₁ = 5 · 3 = 15 см
6 ед.
Объяснение:
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
НМ = ОН - О1Н1 = 8-5 = 3 ед.
Высота боковой грани НН1 = 6 ед.
Поделитесь своими знаниями, ответьте на вопрос:
Площадь параллелограмма равна 80см квадратных , а одна из его сторон 16 см. какой длины может быть другая сторона параллелограмма? объясните )
16*b*sin a=80
b*sin a=5, при этом sin a <1 (т.к катет меньше гипотенузы по тригонометрическим функциям). Значит b>5