Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными. Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся. В нашем случае прямые ОD и СЕ - скрещивающиеся. Треугольник АВС - правильный. Проведем медиану АН. Это и высота треугольника. Соединим точки Е и Н. Четырехугольник ОDЕН - параллелограмм по первому признаку: если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом. В нашем случае ОН=DE, так как DЕ-средняя линия треугольника АРО и DE=(1/2)*АО. Но АН -медиана и АО=(2/3)АН (по свойству медиан), значит DE=(2/3)*(1/2)*АН=(1/3)*АН, ОН=(1/3)*АН (так как АН - медиана). Итак, ОН=DЕ и DЕ параллельна ОН, так как DЕ - средняя линия треугольника АРО (дано) и, следовательно, параллельна АО. Итак, ОDЕН - параллелограмм и ОD параллельна и равна НЕ. Тогда искомый угол межу прямыми ОD и СЕ - это угол СЕН. В прямоугольном треугольнике СЕН (<Н=90°) тангенс угла СЕН равен отношению СН/ЕН. СН=а/2 (половина стороны ВС тетраэдра), и ЕН=OD=а/2, так как ОD - медиана прямоугольного треугольника АОР, проведенная из вершины прямого утла. Таким образом, Тgα=1, а сам искомый угол равен 45°. Это ответ.
Kalashnikova
03.09.2022
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Найдем площадь: S= ответ:54
femida69
03.09.2022
1) Градусная мера полного угла равна 360* Найдем град. меру данного нам угла: 360/3=120* Угол в 120* тупой(больше 90*) отсюда следует, что нам дан тупоугольный треугольник. 2) Сумма углов в любом треугольнике равна 180* Определим на сколько частей ее разделили: 5+7+3=15 частей найдем одну часть 180/15=12* N=12*5=60* B=12*3=36* G=12*7=84* 3) Сумма углов в любом треугольнике равна 180* Угла при основании р.б равны (180-77)/2=51.5* - угол напротив основания 4) Сумма углов в любом треугольнике равна 180* Угла при основании р.б равны 52*2= 104* - градусная мера обоих углов при основании 180-104=76* угол напротив основания 5) Сумма углов в любом треугольнике равна 180* С=180-32-60=88* 6) Сумма острых углов в прямоугольном треугольнике равна 90* 90-81=9* - второй острый угол 7) если в треугольнике есть тупой угол(больше 90*), то он тупоугольный 106*>90* - отсюда следует , что наш треугольник тупоугольный
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Точка d-середина ребра pa, точка e-середина высоты po правильного тетраэдра pabc. найдите угол между прямыми od и ce
Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
В нашем случае прямые ОD и СЕ - скрещивающиеся.
Треугольник АВС - правильный. Проведем медиану АН. Это и высота треугольника. Соединим точки Е и Н. Четырехугольник ОDЕН - параллелограмм по первому признаку: если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом. В нашем случае ОН=DE, так как DЕ-средняя линия треугольника АРО и DE=(1/2)*АО. Но АН -медиана и АО=(2/3)АН (по свойству медиан), значит DE=(2/3)*(1/2)*АН=(1/3)*АН, ОН=(1/3)*АН (так как АН - медиана). Итак, ОН=DЕ и DЕ параллельна ОН, так как DЕ - средняя линия треугольника АРО (дано) и, следовательно, параллельна АО. Итак, ОDЕН - параллелограмм и ОD параллельна и равна НЕ. Тогда искомый угол межу прямыми ОD и СЕ - это угол СЕН. В прямоугольном треугольнике СЕН (<Н=90°) тангенс угла СЕН равен отношению СН/ЕН. СН=а/2 (половина стороны ВС тетраэдра), и ЕН=OD=а/2, так как ОD - медиана прямоугольного треугольника АОР, проведенная из вершины прямого утла. Таким образом, Тgα=1, а сам искомый угол равен 45°. Это ответ.