В окружность вписан квадрат со стороной 9 корней из 2 см. Найдите сторону правильного треугольника, описанного около этой окружности.
ответ:18√3 (см)
Объяснение:
Диаметром окружности, описанной около квадрата, является его диагональ. Точкой пересечения диагоналей квадрат делится на 4 равнобедренных прямоугольных треугольника, гипотенузы которых - стороны квадрата, а острые углы 45°. => r=9√2•sin45°=9
Центры окружностей, вписанных и описанных около правильного треугольника, совпадают ( это точка пересечения биссектрис, которые в то же время являются его срединными перпендикулярами).
Радиус вписанной в правильный треугольник окружности находят по формуле r=a:2√3 , где а - сторона правильного треугольника. =>
a=r•2√3
a=9•2√3=18√3 (см)

Поделитесь своими знаниями, ответьте на вопрос:
Н - высота пирамиды
Объём пирамиды вычисляется по формуле: Vпир = 1/3 Sосн · Н.
Площадь основания равна S ocн = a².
Высоту пирамиды можно найти, рассматривая прямоугольный треугольник, в котором катетами являются высота Н и половина диагонали d квадрата, лежащего в основании пирамиды. Гипотенузой этого треугольника является боковое ребро а пирамиды.
Половина диагонали квадратного основания d = а· 0.5√2
Высоту Н найдём из теоремы Пифагора: а² = d² + H² → H = √(a² - d²) =
= √(a² - 0.5a²) = √(0.5a²) = 0.5a √2
Вернёмся к объёму Vпир = 1/3 Sосн · Н = 1/3 a² · 0.5a √2 = a³/6 · √2
Подставим значение Vпир = 18
18 = a³/6 · √2 → а³ = 18 · 6 : √2 → а = ∛4 · 27 : √2) = 3∛(4:√2) = 3∛(√8) =
= 3 · 8^(1/6) = 3√2
ответ: длина ребра равна 3√2