Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны.
ЧТД
Поделитесь своими знаниями, ответьте на вопрос:
Іте , бічне ребро правильної чотирикутної піраміди дорівнює 8см і нахилене до площини основи під кутом 30градусів. знайдіть висоту піраміди.
В прямоугольном треугольнике SCO:
Боковое ребро пирамиды SC = 8см - гипотенуза
Высота пирамиды SO - искомый катет, противолежащий ∠SCO = 30°
Катет, противолежащий углу 30°, равен половине гипотенузы.
SO = 1/2 * SC
SO = 1/2 * 8 = 4 (cм)
Высота пирамиды равна 4 см