Диагональ прямоугольника делит его на два треугольника, отношение сторон которых равно отношению сторон "египетского треугольника". т.е. 3:4:5
Примем коэффициент отношения сторон за х.
Тогда при катетах 3х и 4х гипотенуза равна 5х.
Следовательно , диагональ здесь играет роль гипотенузы
5х=20
х=4
Один катет равен 3*4=12 см - это меньшая сторона прямоугольника
другой 4*4=16 см - это большая его сторона.
ответ: Большая сторона прямоугольника равна 16 см.
Задачу можно решить и через теорему Пифагора:
20²=(3х)²+(4х)²
400=9х²+16х²
25х²=400
х²=16
х=4 см
Но гораздо удобнее знать хотя бы несколько так называемых Пифагоровых троек, к которым относится и египетский треугольник.
Развёрткой боковой поверхности конуса является круговой сектор радиуса 6 см и дугой 120 градусов. Найдите площадь поверхности конуса.
-------------------------
Если данный сектор свернуть так, чтобы концы дуги сошлись, а боковые стороны – радиусы окружности, частью которой является этот сектор, – совместились, получим наш конус. При этом радиус кругового сектора будет его образующей, а длина дуги - длиной окружности в основании конуса.
Площадь поверхности конуса - сумма площадей основания и боковой поверхности.
Данная развертка - третья часть круга, т.к. ее градусная мера - треть от полной окружности. Площадь сектора = площади боковой поверхности конуса.
Длина С дуги сектора - длина окружности основания конуса.
С=2πR:3
С=2π•6:3=4π
4π=2π•r, где r- радиус основания конуса.
r=2
Площадь основания
S осн=πr²=4π см²
S бок=π r L=π•2•6=12π или πR²:3=(36π:3=12) см²
S полн=16π см²
Поделитесь своими знаниями, ответьте на вопрос:
Втрапеции abcd основа ad перпендикулярно боковой стороне ab угол d равен 60 градусов диагональ ac перпендикулярна стране cd равной 6 см найдите длину основания ad
∠D = 60° ⇒ ∠CAD = 30°
Сторона CD лежит против ∠CAD в 30° ⇒ CD = 1/2AD ⇒ AD = 2CD = 2 * 6 = 12 см
ответ: AD = 12 см