В трапеции верхнее основание = 2см,
нижнее основание = 14 см.
Проведи две высоты с концов верхнего основания к нижнему.
По бокам трапеции получишь 2 равных прямоугольных треугольника
14 - 2 = 12 (см) - это 2 нижних катета обоих треугольников
12 : 2 = 6 (см) - это один нижний катет одного треугольника
Боковая сторона трапеции - это гипотенуза треугольника = 10 см
Нижний катет треугольника = 6см
Проведённая высота - это вертикальный катет треугольника
По теореме Пифагора определим высоту
Высота = √(10^2 - 6^2) = √(100 - 36) = √64 = 8(см)
ответ: 8 см - высота трапеции.
если опустить высоты из концов вехнего основания на нижнее и обозначить отсекаемые куски нижного отснования (от конца основания до ближайшего основания высоты) за x и y, то есть 2 уравнения.
x+y = 18-10 = 8;
17^2 - y^2 = 15^2 - x^2;
Я намеренно не буду решать это очень простую систему, а просто замечу, что 8, 15 и 17 - пифагоровы числа, то есть фигура с такими сторонами - прямоугольный треугольник. Поэтому x = 0 (ну решите системку сами, увидите:)). Итак, высота равна 15 :)));
Осталось понять, что проведенная через точку пересячения диагоналей высота делится точкой пересечения в отношении 18/10, то есть 9/5 (как основания, следует из подобия треугольников, образованных диагоналями и основаниями), поэтому длинна искомого отрезка равна
15*9/(9+5) = ну очень сложный ответ 135/14
второй 15*5/14 =75/14
Странно, кривой какой-то ответ, хотя 135+75=210, как и должно быть
Поделитесь своими знаниями, ответьте на вопрос:
Диагональ равносторонней трапеции перпендикулярна к боковой стороне, а основы = 70см и 25см. найти отрезки, на которые диагональ делит высоту трапеции, проведенной с тупого угла. діагональ рівнобічної трапеції перпендикулярна до бічної сторони, а основи = 70см і 25см. знайти відрізки, на які діагональ ділить висоту трапеції, проведену з тупого кута.
HBCK - прямоугольник (ВН ║ СК как перпендикуляры к одной прямой, ВС ║НК - основания) ⇒ВС = НК = 25 см, ВН = СК = h
ΔABH = ΔDCK по гипотенузе и катету (ВН = СК, АВ = CD) ⇒
AH = KD = (AD - BC)/2 = 45/2 см ⇒ АК = 25 + 45/2 = 95/2
ΔACD: ∠C = 90°
h² = AK · KD = 95/2 · 45/2
h = √(95/2 · 45/2) = 5 · 3 · √19/2 = 15√19/2 см
ΔВСО подобен ΔНОА по двум углам (∠СВО = ∠АНО = 90°, ∠ВСО = ∠ОАН как накрест лежащие при пересечении ВС║AD секущей АС) ⇒
ВО/ОН = ВС/АН = 25 : (45/2) = 10/9
ВО = 10/19 · 15√19/2 = 75√19/19 см
ОН = 9/19 · 15√19/2 = 135√19/38 cм