У∆авс через вершини а і с та центр описаного кола точку о можна провести принаймні дві різні площини. знайдіть площу трикутника, якщо ов = 5 см, вс = 8 см.
В ΔАВС через вершины А и С и центр описанной окружности точку О можно провести по крайней мере две разные плоскости. Найдите площадь треугольника, если ОВ = 5 см, ВС = 8 см
Через любые две точки можно провести прямую и притом только одну. (Аксиома)
Через любую прямую и точку, лежащую ВНЕ этой прямой, можно провести одну и только одну плоскость. (Аксиома)
По условию через три точки А, О и С можно провести не одну плоскость, значит, эти три точки лежат на одной прямой. Отсюда следует, что АС - диаметр окружности, угол АВС опирается на диаметр и равен 90°.
ОВ=R, ⇒ AC=2R=10 см
В ∆ ABC отношение катета к гипотенузе 8:10=4:5 – треугольник "египетский", второй катет равен 6 см.
S (АВС)=АВ•BCЖ2=6•8:2=24 см²
zvezda-71
02.07.2022
1)х град. - один угол х+42 - смежный с ним угол 2х+42=180 2х=138 х=69 град. х+42=111 град. ответ.2 угла по 69 град. 2 угла по 111 град. 2)один угол = 180/6 = 30 градусов второй = 30*5 = 150 градусов биссектрисса делит больший угол на 75 и 75 градусов. биссектрисса образует со сторонами меньшего ууглы 75 и 75+30 грудсов ответ: 75 и 105. можно еще нарисовать 3)< ВОД = < СОА вертикальные углы Пусть < СОА = x Тогда < АОК = 118 -x < COA + < AOK = 180 x + (118 -x) + (118-x) = 180 x = 56 градусов--- это и есть угол ВОД
Lyubov214
02.07.2022
Чертим параллелограмм с острым углом, слева внизу,а с большими сторонами горизонтально.Обозначаем вершины начиная с нижней левой и по часовой A,B,C,D. Обозначим AB=CD=4X,BC=AD=9X.Пусть дана биссектриса угла А. Она пересекает сторону BC в точке E. Проводим EF параллельно AB. ABCD- ромб, AE -диагональ. Тогда AB=BE=EF=AF=CD=4X, EC=FD=9X-4X=5X. Пусть AE=Y.Периметр треуольника AB+BE+AE=4X+4X+Y.Периметр оставшейся части AE+EC+CD+AD=Y+5X+4X+9X. Разность периметров (Y+18X)-(Y+8X)=10X 10X=10 X=1 Периметр параллелограмма 2*(4x+9x)=26x=26
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
У∆авс через вершини а і с та центр описаного кола точку о можна провести принаймні дві різні площини. знайдіть площу трикутника, якщо ов = 5 см, вс = 8 см.
В ΔАВС через вершины А и С и центр описанной окружности точку О можно провести по крайней мере две разные плоскости. Найдите площадь треугольника, если ОВ = 5 см, ВС = 8 см
Через любые две точки можно провести прямую и притом только одну. (Аксиома)
Через любую прямую и точку, лежащую ВНЕ этой прямой, можно провести одну и только одну плоскость. (Аксиома)
По условию через три точки А, О и С можно провести не одну плоскость, значит, эти три точки лежат на одной прямой. Отсюда следует, что АС - диаметр окружности, угол АВС опирается на диаметр и равен 90°.
ОВ=R, ⇒ AC=2R=10 см
В ∆ ABC отношение катета к гипотенузе 8:10=4:5 – треугольник "египетский", второй катет равен 6 см.
S (АВС)=АВ•BCЖ2=6•8:2=24 см²