См. рис.1
Так как ABCD - параллелограмм, то: AO = OC; BO = OD.
По теореме о свойствах отрезков прямой, проходящей через точку пересечения диагоналей параллелограмма: OP = OM и OK = ON.
Так как ∠BOP = ∠MOD и ∠BON = ∠KOD, как вертикальные, то:
ΔВОР = ΔMOD по 1-му признаку равенства треугольников (по двум сторонам и углу между ними), то BP = MD = 7 см.
ΔBON = ΔDOK по тому же 1-му признаку равенства треугольников. Следовательно: BN = KD = 6 см.
Периметр параллелограмма АВСD:
Р = 2*(AB + AD) = 2*(16+6 + 18+7) = 2 * 47 = 94 (см)
-------------------------------
См. рис.2
Теорема о свойствах отрезков прямой, проходящей через точку пересечения диагоналей параллелограмма: Данные отрезки делятся точкой пересечения диагоналей параллелограмма пополам.
Доказательство: пусть АВСD - данный параллелограмм и EF - прямая, пересекающая параллельные стороны AD и ВС. Треугольники ВОЕ и FOD равны по второму признаку (стороне и двум прилежащим углам). В этих треугольниках:
ВО = ОD, так как О - середина диагонали АС,
Углы при вершине О равны, как вертикальные, а углы BOE и FOD равны, как внутренние накрест лежащие при параллельных АС и ВС и секущей BD. Из равенства треугольников следует равенство сторон: OE = OF, что и требовалось доказать.
r = (a+b-c)/2 , где а,b - катеты, с - гипотенуза, тогда
4 = (а+b -26)/2
а+b -26 = 8
а+b = 34
Таким образом Р = а+b +с =34+26 =60 (см).
2) Правило:
отрезки касательных к окружности, проведённые из одной точки, равны, т.е.
ВМ =ВР=5, АМ=АТ=12, СТ=СР = х, тогда по теореме Пифагора:
(5 + х)²+(12 + х)²=17²
25 + 10х + х² +144 +24х +х² = 289
2·х² +34х+169 - 289 =0
2·х² +34х -120 =0
х² + 17х -60 =0
х₁ = 3; х₂= -20 ( не подходит по смыслу задачи)
Таким образом АС = 15, ВС = 8 и Р= 15+8+17 = 40 (см).
Поделитесь своими знаниями, ответьте на вопрос:
Катет прямокутного трикутника відноситься до гіпотенузи як 5: 13.знайти периметр трикутника , якщо його другий катет дорівнює 24 см.
За теоремою Піфагора:
(5х)² + 24² = (13х)²
25х² + 576 = 169х²
144х² = 576
х² = 4
х = 2
Р = 5х + 24 + 13х = 18х + 24 = 36 + 24 = 60 см
Відповідь: 60 см