Существует формула: , где a - сторона треугольника, а R - радиус описанной окружности. Подставим радиус в данное равенство:
a = 6. ответ: 6.
seregina19706867
09.03.2021
R-радиус описанной окружности
Используя эту формулу, можно найти длину стороны.
ответ: сторона треугольника равна 6 см).
Gradus469
09.03.2021
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Sergei248
09.03.2021
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Радиус окружности, описанной около равностороннего треугольника, равен 2 корня из 3 . найдите длину стороны этого треугольника.
Подставим радиус в данное равенство:
a = 6.
ответ: 6.