Треугольник АВС, АВ=25, ВС=29, АС=36, высоты ВН, АМ, СТ, вершина угол В
cosВ = (АВ в квадрате + ВС в квадрате - АС в квадрате) / 2 х АВ х ВС=
= (625 +841 - 1296) / (2 х 25 х 29) =0,1172 - угол 83 =уголВ , sin 83 (В)= 0,9925
АС/sinВ = АВ/sinС, 36/0,9925=25/sinС, sinС = 0,6892
АС/sinВ = ВС/sinА, 36/0,9925=29/sinА, sinА = 0,7995
ВН = АВ х sinА = 25 х 0,7995 =20
СТ = АС х sinА = 36 х 0,7995 = 28,8
АМ = Ас х sinС = 36 х 0,6892 = 24,8
Найменьшая высота проведена на большую сторону АС
Если найдена одна высота остальные можно искать через отношение
ha : hb = (1/a) : (1/b)
Решение весьма уважаемой мною Моявесна абсолютно точное. Просто я не могу отказать себе в маленьком удовольствии - показать, что площадь этого треугольника можно сосчитать устно. Для этого достаточно заметить (сообразить), что треугольник со сторонами (25, 29, 36) составлен из двух Пифагоровых треугольников (то есть прямоугольных треугольников, длины сторон которых - целые числа). Это треугольники (15, 20, 25) и (20, 21, 29), они приставлены друг к другу катетами длины 20 так, что другие катеты - 15 и 21 образуют вместе сторону 36 исходного треугольника.
Отсюда сразу ясно, что высота к стороне 36 равна 20, и это наименьшая из высот, поскольку 36 - наибольшая из сторон.
Поделитесь своими знаниями, ответьте на вопрос:
Параллелограмм меньшая диагональ и стороны которого равны соответственно 25; 17 и 28, вращается около большей стороны. определите поверхность тела вращения. желательно с рисунком
R - радиус основания как конусов, так и цилиндра = высоте параллелограмма BH
l - образующая конуса = сторонам параллелограмма AB и CD
h - высота цилиндра = стороне AD
Неизвестен только радиус. Найдём его.
PΔABD = 28 + 17 + 25 = 70
p = 70/2 = 35
a = AD = 28
b = AB = 17
c = BD = 25
SΔABD = 1/2 * a * h = 1/2 * AD * BH = 14BH
14BH = 210
BH = 15 = R
Подставляем все величины в формулу и считаем поверхность тела:
2πR(l + h) = 2π * 15(17 + 28) = 30π * 45 = 1350π
ответ: 1350π