Объяснение: В ΔМNK из точки М проведите дугу окружности так, чтобы пересечь прямую NK в двух точках Р и Q. Затем поочереди из двух точек Р и Q проведите дуги одинакового радиуса на полу- плоскости относительно прямой NK, где нет точки М. Назовём точку пересечения этих дуг точкой А. Соединим М и А, получим МН ⊥ NK.
Описание: 1) окр (М; r) ∩ MK, получим Р и Q.
2) окр (Р; R) ∩ окр (К; R) = А.
3) МА ∩ NK = Н, МН- искомая высота Δ МNК.
В ΔСДР проведём поочерёдно две дуги одинаковым радиусом больше половины отрезка ДР навстречу друг другу из точек Д и Р. Эти дуги пересекутся в двух точках М и N. Соединим отрезком точки М и N.
Точку пересечения МN и ДР обозначим точкой К. Проведём отрезок СК, который и будет медианой ΔСДР.
Описание: 1)окр (Д; R) ∩ окр(Р; R), получим М и N.
2) MN ∩ ДР = К, СК- искомая медиана ΔСДР.
P.S. Если непонятно обозначение окружности в описании, то:
окр ( Р; R) - обозначение окружности с центром в Р и радиусом R.
3)
Объяснение:
Пусть Угол Д будет при вершине, а углы С и Е снизу.
Сумма углов треугольника равна 180°
Найдём нам неизвестный угол Д:
Угол Д=180°-(28°+72°)=80°
Против большего угла лежит самая большая сторона треугольника, против среднего угла средняя сторона, а против меньшего угла меньшая сторона.
1)ДЕ>СД.
Сторона ДЕ лежит против угла С=28°, а сторона СД против угла Е=72°. Это равенство неверное, так как угол С меньше угла Е, отсюда следует, что ДЕ<СД
2)СД>СЕ.
Сторона СД лежит против угла Е=72°, а сторона СЕ против угла Д=80°. Это равенство неверное, так как угол Д больше угла Е, отсюда следует, что СД<СЕ.
3)СЕ>ДЕ.
Сторона СЕ лежит против угла Д=80°, а сторона ДЕ лежит против угла С=28°. Это равенство верное, так как угол Д больше угла С, отсюда следует, что СЕ>ДЕ.
4)ДЕ>СЕ.
Сторона ДЕ лежит против угла С=28°, а сторона СЕ против угла Д=80°. Это равенство неверное, так как угол С меньше угла Д, отсюда следует, что ДЕ<СЕ.
Поделитесь своими знаниями, ответьте на вопрос:
Ребро куба efghe1f1g1h1 равно 1.найдите тангенс угла между плоскостями ehg и egf1
Ось X - EF
Ось У - ЕН
Ось Z - EE1
Уравнение плоскости ЕНG
z=0
Координаты точек
G(1;1;0)
F1(1;0;1)
Уравнение плоскости EGF1
ax+by+cz=0
Подставляем координаты точек
а+b=0
a+c=0
Пусть а=1 тогда b= -1 c=-1
x-y-z=0
k=√(1+1+1)=√3
Косинус угла между искомыми плоскостями равен
| -1*1| /√3 = 1/√3
Синус угла равен
√(1-1/3)=√2/√3
Тангенс угла равен
√2/1= √2