Lyubov214
?>

Являются ли векторы ab и ce коллинеарными, если a(5, -1, 3)b(2, -2, 4), c(3, 1, -2), e(6, 1, 1 ответ объяснить.

Геометрия

Ответы

swetlanafatinia7323
Решение задания смотри на фотографии
Являются ли векторы ab и ce коллинеарными, если a(5,-1,3)b(2,-2,4), c(3,1,-2),e(6,1,1). ответ объясн
YelenaZOLTANOVICh105
ΔАВС- равнобедренный.Пусть  АВ=ВС =а. ВЕ⊥ АС=10 см, DC⊥АВ=12 см. Найти R окр.,описанной около Δ СDB.
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC   ⇒  S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB                S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC                 S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC  (2)
Следовательно, DB / BC = 6·DB / 5·AC      ⇒ 5AC=6BC  (3)
Из  Δ ВЕС  найдём  ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100     АС=2х=2·√а²-100
Используем (3) равенство :  5 АС=6 ВС и  АС=2х   ⇒
5·2√а²-100 = 6а  ⇒  100·(а²-100)=36 а²  ⇒  64 а²=10000  
а²=10000 / 64   ⇒  а=100 / 8    R = 1/2 a   =  50/8 = 25 / 4
Антон-Марина

Соответствующие диагонали разбивают подобные многоугольники на подобные треугольники.

Доказываем подобие треугольников (с одинаковым коэффициентом и соответствием сторон) - тем самым доказываем подобие многоугольников.  

(3) A1B1C1~ABC, A1D1C1~ADC (по двум сторонам и углу между ними)  

(4) A1B1C1~ABC (по данным смежным сторонам и углу между ними)

A1D1C1~ADC (по стороне (A1C1, AC) и прилежащим углам)

(6) A1B1C1~ABC, A1B1D1~ABD (по трем пропорциональным сторонам)

∠C1A1D1=∠CAD

C1A1D1~CAD (по двум сторонам и углу между ними)


в каких случаях можно утверждать, что два четырёхугольника подобны?

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Являются ли векторы ab и ce коллинеарными, если a(5, -1, 3)b(2, -2, 4), c(3, 1, -2), e(6, 1, 1 ответ объяснить.
Ваше имя (никнейм)*
Email*
Комментарий*