Пусть две стороны треугольника равны a и b, а медиана проведена к третьей стороне, которая равна с. Длина медианы пусть равна m. Тогда если продолжить медиану на ее длину, и достроить до параллелограмма, то верно неравенство треугольника: a+b>2m. Отсюда первое условие. Для второго, исходный треугольник разбит медианой на 2 треугольника. Для каждого из них неравенство треугольника можно записать так: m+c/2>a m+c/2>b Складывая эти неравенства и перенося с, получим 2m>a+b-c, что и требовалось.
Salnikov1730
28.10.2021
Пусть две стороны треугольника равны a и b, а медиана проведена к третьей стороне, которая равна с. Длина медианы пусть равна m. Тогда если продолжить медиану на ее длину, и достроить до параллелограмма, то верно неравенство треугольника: a+b>2m. Отсюда первое условие. Для второго, исходный треугольник разбит медианой на 2 треугольника. Для каждого из них неравенство треугольника можно записать так: m+c/2>a m+c/2>b Складывая эти неравенства и перенося с, получим 2m>a+b-c, что и требовалось.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Напишите формулу площади равнобедренного треугольника 4 класса