а)
проекция Точки A на плоскость (A1B1C1)=A1, проекция точки D=D1, значит проекция отрезка AD=A1D1.
Отрезок A1D1║B1C1 из свойств правильного шестиугольника, и A1D1║AD так как плоскость (ABC)║(A1B1C1) значит AD║B1C1 Ч.Т.Д.
б)
Рассмотрим треугольник A1B1C1, опустим высоту A1H на основание B1C1, AH Также будет ⊥B1C1 по теореме о трех перпендикулярах, значит AH искомое расстояние.
AA1 будет ⊥A1H так-как он ⊥ плоскости (A1B1C1).
найдем A1H методом площадей в треугольнике A1B1C1.
$$\begin{lgathered}S=\frac{1}{2} A_1B_1*B_1C_1*sin(120)=\frac{1}{2} B_1C_1*A_1H\\a^2*sin(120)=a*A_1H\\A_1H=a*sin(180-60)=a*sin(60)=\frac{a\sqrt{3}}{2}\end{lgathered}$$
A1H также можно было найти рассмотрев треугольник A1BH, сказав что A1H=A1B1*sin(60)
теперь по теореме пифагора найдем AH:
$$AH=\sqrt{A_1H^2+AA_1^2}=\sqrt{\frac{4a^2}{4}+\frac{3a^2}{4}}=\frac{a\sqrt{7}}{2}$$
ответ: $$AH=\frac{a\sqrt{7}}{4}$$
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь боковой поверхности правильной четырехугольной пирамиды, у которой боковое ребро равно 17 см, а апофема - 15 см
Сторона а основания равна:
а =2√(L² - A²) = 2√(17² - 15²) = 2√(289 - 225) = 2√64 = 2*8 = 16 см.
Периметр Р основания равен: Р = 4а = 4*16 = 64 см.
Площадь боковой поверхности правильной четырехугольной пирамиды Sбок = (1/2)РА = (1/2)64*15 = 480 см².