На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольной трапеции авсд большее основание ад перпендикулярно боковой стороне ав. диагональ ас = боковой стороне сд, угол асв=32 градуса. найдите углы этой трапеции.
В треугольнике АСД угол А=90-58=32, угол А = углу Д = 32 как углы при основании равнобедренного треугольника ( он равнобедреный по условию задачи) следовательно угол С=116
углы трапеции соответственно равны А=90, В=90, С=148 .Д=32