olyaartemenko
?>

Найди вектор суммы данных векторов по закону многоугольника (подумай, как применить этот закoн без рисунка; нулевой вектор обозначай через 0​

Геометрия

Ответы

tokarevaiv

ответ: 10; 4

Объяснение:

Дано:Δ МКР

∠К=90°;

КМ=12

КР=16

Найти R, r

представим такую картинку - у нас есть прямоугольник со сторонами 12 и 16, чему равна диагональ? Верно, по Пифагору она равна

√(12²+16²)=√400=20

а вокруг этого прямоугольника описана окружность. Чем является ее радиус? половиной диагонали, поскольку диагонали пересекаются и в точке пересечения делятся пополам. значит, если вытереть один треугольник, на который прямоугольник разбивает диагональ, то получим треугольник, описанный около окружности, с тем же радиусом. поэтому ответ на первую часть вопроса 20/2=10

что касаемо второй части, есть множество формул для нахождения радиуса вписанной окружности.

например; √((р-а)(р-b)(h-c)/р), р=Р/2=(20+12+16)/2=(10+8+6)=24

r=√(((24-20)*(24-12)(24-16)/24)=√(4*8*12/24)=√16=4

или так:(КМ+КР-РМ)/2=(12+16-20)/2=6+8-10=4


MKP - прямоугольный, K = 90, KM = 12, KP = 16. Найдите радиусы описанной и вписанной окружностей ( О
zhmulyov-denis8

Равновеликие фигуры – это фигуры с равной площадью.

Допустим AD=BC=a и AB=CD=b.

Площадь прямоугольника ABCD:

S=ab

MP – средняя линия, а она параллельна основания, что является прямой. Значит ΔADK – равнобедренный с равными боковыми сторонами AK=DK и основанием AD.

Средняя линия равна половине параллельного основания, значит MP=a/2

И BM=CP

BM+CP=a/2 (a/2, потому что если отнять BC-MP=a-a/2=a/2)

BM=CP=a/4

Средняя линия делит боковые стороны пополам, поэтому AM=MK и DP=PK. Так как у нас равнобедренный треугольник AM=MK=DP=PK.

Угол C – прямой. По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов.

PD²=CP²+CD² (CP=a/4, CD=b)

{PD}^{2} = { (\frac{a}{4}) }^{2} + {b}^{2} \\ {PD}^{2} = \frac{ {a}^{2} }{16} + {b}^{2} \\ {PD}^{2} = \frac{ {a}^{2} + 16 {b}^{2} }{16} \\ PD = \sqrt{ \frac{ {a}^{2} + 16 {b}^{2} }{16} } \\ PD = \frac{ \sqrt{ {a}^{2} + 16 {b}^{2} } }{4}

PD=PK=KM=AM = \frac{ \sqrt{ {a}^{2} + 16 {b}^{2} } }{4}

Значит боковая сторона равна

KD = AK = \frac{ \sqrt{ {a}^{2} + 16 {b}^{2} } }{4} \times 2 = \frac{ \sqrt{ {a}^{2} + 16 {b}^{2} } }{2}

Опустим высоту KH. Высота равнобедренного треугольник является медианой тоже, поэтому AH=DH=a/2

По теореме Пифагора

KD²=DH²+KH²

KH²=KD²-DH²

{KH}^{2} = ( \frac{ \sqrt{ {a}^{2} + 16 {b}^{2} }}{2})^{2} - {( \frac{a}{2} )}^{2} \\ {KH}^{2} = \frac{ {a}^{2} + 16 {b}^{2} }{4} - \frac{ {a}^{2} }{4} \\ {KH}^{2} = \frac{16 {b}^{2} }{4} \\ {KH}^{2} = 4 {b}^{2} \\ KH = \sqrt{4 {b}^{2} } \\ KH = 2b

Формула площади треугольника:

S = \frac{1}{2} ah

У нас a – сторона (у нас это AD), h – высота к этой стороне (в нашем случае KH)

S = \frac{1}{2} \times a \times 2b \\ S = ab

Площадь прямоугольника тоже был ab

Значит ab=ab, следовательно они равновеликие.


Докажите что прямоугольник ABCD и треугольник AKD изображённые на рисунке равновеликие и равноставле

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найди вектор суммы данных векторов по закону многоугольника (подумай, как применить этот закoн без рисунка; нулевой вектор обозначай через 0​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

sbraginets
Alekseevna1064
seregina19706867
aleksandramir90
stepanova-natalie
ngoncharov573
familumid
des-32463
helena-belozerova
sov0606332
Poroskun
lele52
svetlanam81
llmell6
yurogov61