В переложении на язык формул предложение Максима выглядит так x=4cosA, где А угол между сторонами с длинами 4 и 6. Из теоремы косинусов 5^2=4^2+6^2-2*4*6*cosA находим угол A а затем и х.
melnik-738
19.08.2022
Сумма острых углов прямоугольного треугольника равна 90°. Биссектриса острого угла равна одному из двух отрезков на которые она разделила противоположную сторону. Значит имеем равнобедренный треугольник, в котором углы при основании (гипотенузе данного нам прямоугольного треугольника) равны. Но ожин из этих углов - второй острый угол данного нам прямоугольного треугольника и он равен половине первого острого угла (биссектриса которого нам дана) Значит сумма острых углов нашего прямоугольного тр-ка равна сумме 3-х одинаковых углов, то есть второй острый угол равен 30°. В прямоугольном треугольнике против угла 30° лежит катет, равный половине гипотенузы. Гипотенуза здесь - это наша биссектриса. И она вдвое длиннее катета -второго из отрезков, на которые она разделила противоположную сторону исходного треугольника. Что и требовалось доказать.
dimaaristov
19.08.2022
Сумма острых углов прямоугольного треугольника равна 90°. Биссектриса острого угла равна одному из двух отрезков на которые она разделила противоположную сторону. Значит имеем равнобедренный треугольник, в котором углы при основании (гипотенузе данного нам прямоугольного треугольника) равны. Но ожин из этих углов - второй острый угол данного нам прямоугольного треугольника и он равен половине первого острого угла (биссектриса которого нам дана) Значит сумма острых углов нашего прямоугольного тр-ка равна сумме 3-х одинаковых углов, то есть второй острый угол равен 30°. В прямоугольном треугольнике против угла 30° лежит катет, равный половине гипотенузы. Гипотенуза здесь - это наша биссектриса. И она вдвое длиннее катета -второго из отрезков, на которые она разделила противоположную сторону исходного треугольника. Что и требовалось доказать.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Добрые люди . стороны треунольника 4, 5 и 6 см.сколько см составляет проекцич стороны длиной 4 см на сторону длиной 6 см?
x=4cosA, где А угол между сторонами с длинами 4 и 6.
Из теоремы косинусов
5^2=4^2+6^2-2*4*6*cosA находим угол A а затем и х.