Обозначим через х длину того катета данного прямоугольного треугольника, который составляет с гипотенузой угол в 30°, а через у — длину второго катета.
Используя формулы сторон прямоугольного треугольника, выразим через х длину второго катета:
у = х * tg( 30°) = x * √3.
Согласно условию задачи, площадь данного прямоугольного треугольника равна 32√3.
Поскольку площадь любого прямоугольного треугольника равна половине произведения его катетов, следовательно, можем составить следующее уравнение:
х * х * √3 / 2 = 32√3.
Решаем полученное уравнение:
х² = 32√3 / (√3/2);
х² = 64;
х = 8.
Зная длину первого катета, находим длину второго:
у = x * √3 = 8√3.
Используя теорему Пифагора, находим длину гипотенузы:
√(8² + (8√3)²) = √(64 + 64 * 3) = √(64 * 4) = 8 * 2 = 16.
ответ: длина гипотенузы равна 16.
Поделитесь своими знаниями, ответьте на вопрос:
Точки m k p лежат на одной прямой. mk=35 см, отрезок mp в 6 раз больше отрезка kp. найдите отрезок kp