ответ: Не всякая фигура имеет центр симметрии.
Объяснение:
Центральная симметрия относительно точки О - это такое преобразование пространства, при котором каждая точка А отображается в точку А' такую, что АО = A'O.
Фигура называется симметричной относительно точки О, если для каждой точки фигуры точка, симметричная ей относительно точки О, так же принадлежит этой фигуре.
Примеры фигур, имеющих центр симметрии:
отрезок, квадрат, круг, параллелограмм, правильный многоугольник с четным количеством сторон.
Примеры фигур, не имеющих центра симметрии:
треугольник, многоугольник с нечетным количеством сторон, трапеция.
Угол А = 98,2 градуса; угол В = 60 градусов; угол С = 21,8 градуса.
Объяснение:
Найти углы треугольника, зная его стороны, можно по теореме косинусов: квадрат стороны, лежащей против угла, который мы хотим найти, равен сумме квадратов двух других сторон, которые образуют искомый угол, минус удвоенное произведение двух этих сторон, умноженное на косинус угла между ними.
1) Найдём Угол В . Этот угол образован сторонами 3 см и 8 см.
7^2 (против Угла В лежит сторона 7) = 3^2 + 8^2 - 2 * 3 * 8 * cos Угла В, который мы хотим найти,
49 = 9 + 64 - 48 * cos Угла В,
откуда
cos Угла В = - 24/ (-48) = 1/2.
1/2 - это табличное значение угла в 60 градусов. Значит, Угол В = 60 градусов.
2) Два других угла находятся аналогично, но там получаются не круглые значения, поэтому надо находить значения углов по таблицам Брадиса либо через функцию арккосинус в Excele.
Находим:
Угол А = 98,2 градуса,
Угол С = 21, 8 градуса.
ПРОВЕРКА:
60 + 98,2 + 21,8 = 180.
Поделитесь своими знаниями, ответьте на вопрос:
Напишите уравнение окружности с диаметром ab, если a (-2; 4) и в (-2; -2 9 класс.
a;b - центр окружности, R - радиус.
В нашем случае AB - диаметр, значит AB/2 - радиус.
Координаты середины диаметр (центр окружности) получаем по формуле:
(x1+x2)/2 = -4/2=-2
(y1+y2)/2= 4-2 / 2 = 2/2 = 1
a = -2
b = 1
Уравнение:
(x+2)^2 + (y-1)^2 = 1/4*AB^2