На рисунке изображена окружность . Диаметр окружности АВ=26.Хорды CD и EF параллельны и равны 24 и 10 соответственно .Чему равно расстояние между хордами CD и EF ?
Объяснение:
1) АВDC-равнобедренная трапеция .Пусть DP⊥AB, тогда по свойству равнобедренной трапеции АР=(26+24):2=25 ,РВ=(26-24):2=1.
Для прямоугольного ΔADB высота, проведенная на гипотенузу DP=√(25*1)=5 .
2) АВFE-равнобедренная трапеция .Пусть FM⊥AB, тогда по свойству равнобедренной трапеции АM=(26+10):2=18 ,MВ=(26-10):2=8.
Для прямоугольного ΔADB высота, проведенная на гипотенузу DP=√(18*8)=12 .
3)Расстояние между хордами CD и EF равно разности отрезков
DP-АМ=12-5=7 .
===============================================
Свойство равнобедренной трапеции : Высота , опущенная из вершины на большее основание , делит его на большой отрезок , который равен полусумме оснований и меньший - равен полуразности оснований
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу.
а) "Всякий ромб является квадратом" - нет, это неверно. Квадрат - это тоже ромб, но все его углы прямые. Но также есть такие ромбы, у которых есть два острых угла и два тупых угла. Поэтому утверждения "а" неверно.
б) "Если диагонали четырёхугольника взаимно перпендикулярны, то он является ромбом" - нет, это неверно. Диагонали могут быть взаимно перпендикулярными, например, и у трапеции (трапеция - четырёхугольник с двумя параллельными сторонами) Но это не значит, что трапеция - ромб. Поэтому утверждения "б" неверно.
в) "Существует квадрат, который не является ромбом" - нет, это неверно. Квадрат - это всегда ромб, так как все его стороны равны между собой. Поэтому утверждения "в" неверно.
г) "Если диагонали параллелограмма не равны, то он не прямоугольник" - да, это верно. Так как диагонали прямоугольника всегда равны, не иначе. Поэтому утверждения "г" верно.
Поделитесь своими знаниями, ответьте на вопрос:
Дано: авсd-паралл найти ав; вс; сd; ad