Marianna45
?>

Прямые ac и bd пересекаются в точке о. угол аоb равен 123 градуса. найдите остальные углы ! только решение без чертежа !

Геометрия

Ответы

a800000
Как-то так незнаю правильно но Сестра сказала тау
Прямые ac и bd пересекаются в точке о. угол аоb равен 123 градуса. найдите остальные углы ! только р
Vitalevich
Доказательство:

1) В прямоугольном треугольнике АВС из вершины прямого угла С проведем к гипотенузе AB отрезок CO так, чтобы CO=OA.

2) ∆ AOC — равнобедренный с основанием AC (по определению равнобедренного треугольника).

Значит, у него углы при основании равны:∠OAC=∠OCA=α.

3) Так как сумма острых углов прямоугольного треугольника равна 90º, то в треугольнике ABC ∠B=90º- α.

4) Так как ∠BCA=90º (по условию), то ∠BCO=90º- ∠OCA=90º-α.

5) Рассмотрим треугольник BOC.

∠BCO=90º-α, ∠B=90º- α, следовательно, ∠BCO=∠B.

Значит, треугольник BOC — равнобедренный с основанием BC (по признаку равнобедренного треугольника).

Отсюда BO=CO.

6) Так как CO=OA (по построению) и BO=CO (по доказанному), то CO=OA=BO, AB=OA+BO=2∙OA=2∙CO.

Таким образом, точка O — середина гипотенузы AB, отрезок CO соединяет вершину треугольника с серединой противолежащей стороны, значит, CO — медиана, проведенная к гипотенузе, и она равна половине гипотенузы
svetlanam81
Хорошо! Для решения данной задачи, мы можем использовать несколько методов. Я предлагаю рассмотреть два способа решения - с использованием формулы для площади трапеции и с использованием формулы для площади треугольника.

1. Решение с использованием формулы для площади трапеции:
Для начала, нам необходимо найти высоту трапеции. Высота трапеции - это расстояние между основаниями, перпендикулярное им. Для этого можно воспользоваться теоремой Пифагора.

Мы знаем, что сторона AD равна 10 см, а сторона BC равна 8 см. Воспользуемся теоремой Пифагора:
AB^2 + BC^2 = AC^2
AB^2 + 8^2 = 10^2
AB^2 + 64 = 100
AB^2 = 100 - 64
AB^2 = 36
AB = √36
AB = 6 см

Теперь у нас есть высота трапеции AB, поэтому можем воспользоваться формулой для площади трапеции:
S = ((a + b) * h) / 2
где a и b - длины параллельных оснований, h - высота трапеции.

В нашем случае a = AD = 10 см, b = BC = 8 см, h = AB = 6 см:
S = ((10 + 8) * 6) / 2
S = (18 * 6) / 2
S = 108 / 2
S = 54 квадратных см

Ответ: площадь трапеции равна 54 квадратных см.

2. Решение с использованием формулы для площади треугольника:
Заметим, что треугольник ACD - это прямоугольный треугольник с гипотенузой AC. Мы знаем длины катетов AD и DC (они равны 10 см и 8 см соответственно), а также площадь треугольника ACD (она равна 30 квадратных см).

Теперь мы можем воспользоваться формулой для площади треугольника:
S = (a * b) / 2
где a и b - длины катетов прямоугольного треугольника.

В нашем случае a = AD = 10 см, b = DC = 8 см:
S = (10 * 8) / 2
S = 80 / 2
S = 40 квадратных см

Теперь нам нужно найти площадь трапеции. Трапеция состоит из двух треугольников ACD и BCD, поэтому мы можем сложить их площади:
S(trapezoid) = S(ACD) + S(BCD)
S(trapezoid) = 30 + 40
S(trapezoid) = 70 квадратных см

Ответ: площадь трапеции равна 70 квадратных см.

Я надеюсь, что мое объяснение было подробным и понятным для тебя. Если у тебя есть еще какие-либо вопросы, пожалуйста, не стесняйся задавать их!

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Прямые ac и bd пересекаются в точке о. угол аоb равен 123 градуса. найдите остальные углы ! только решение без чертежа !
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

МуратМарина1140
mirsanm26249
Vorotko814
VladimirBorisovich
sanina611
Ludmila777020
shtankosoyuz1629
gorbelena1971
MikhailNechaeva
la-ronde737
alex07071
gumirovane2294
es196
kirieskamod262
murin