zaseche99
?>

Найти периметр прямоугольника, если длина одной стороны равна 15 см, а другой – в 3 раза меньше.

Геометрия

Ответы

starh
Вот по этому примеру

Найти периметр прямоугольника, если длина одной стороны равна 15 см, а другой – в 3 раза меньше.
VladimirovichKazakova1202
1) Чтобы треугольник был равнобедренным, две стороны должны быть равны, то есть расстояния между точками должны быть равными
A(-6;1)   B(2;4)   C(2;-2)
AB= \sqrt{(X_B-X_A)^2+(Y_B-Y_A)^2}= \\ \\ =\sqrt{(2+6)^2+(4-1)^2} = \sqrt{64+9} =\sqrt{73} \\ \\ AC= \sqrt{(X_C-X_A)^2+(Y_C-Y_A)^2}= \\ \\ =\sqrt{(2+6)^2+(-2-1)^2} = \sqrt{64+9}= \sqrt{73} \\ \\ CB= \sqrt{(X_B-X_C)^2+(Y_B-Y_C)^2}= \\ \\ =\sqrt{(2-2)^2+(4+2)^2} = \sqrt{36} =6
AB = AC  ⇒ ΔABC - равнобедренный

2) ΔABC :    AB=AC=√73;  BC=6 .
В прямоугольном треугольнике равными могут быть только катеты. Самая длинная сторона - гипотенуза - не может быть равна катетам. 
BC=6 < AB=AC=√73  ⇒  ΔABC не является прямоугольным

3) BK - медиана  ⇒  AK = KC.  Координаты точки K
X_K= \frac{X_A+X_C}{2} = \frac{-6+2}{2} =-2 \\ \\ Y_K= \frac{Y_A+Y_C}{2} = \frac{1-2}{2} =-0,5
 B(2;4)   K(-2; -0,5)
BK = \sqrt{(X_K-X_B)^2+(Y_K-Y_B)^2} = \\ \\ = \sqrt{(-2-2)^2+(-0,5-4)^2}= \sqrt{16+20,25} = \sqrt{36,25}
BK = √36,25 ≈ 6,02

P.S. Тема: координатная плоскость, координаты точек, расстояние между точками
Даны координаты вершин треугольника abc a(-6; 1) b(2; 4) c(2; -2) докажите, что треугольник abc равн
Mikhailovich_Viktoriya
1. Площадь параллелограмма равна 72 см², а его стороны - 12 см и 8 см. Найдите высоты параллелограмма.

Sabcd = a · h₁                       Sabcd = b · h₂
12 · h₁ = 72                            8 · h₂ = 72
h₁  = 72/12 = 6 см                h₂ = 72/8 = 9 см

2. Площадь ромба со стороной 18 см и высотой 7 см равна площади прямоугольника со стороной 14 см. Найдите периметр прямоугольника.

Sabcd = Sklmn
AD · BH = a · b
18 · 7 = 14 · b
b = 18 · 7 / 14 = 9 см
Pklmn = 2(a + b) = 2(14 +9) = 46 см

3. Найдите площадь равнобедренного треугольника, боковая сторона которого равна 15 см, а основание - 24 см.

Проведем ВН - высоту треугольника АВС. Так как треугольник равнобедренный, ВН является медианой.
АН = НС = 24/2 = 12 см

ΔАВН: ∠АНВ = 90°, по теореме Пифагора
             ВН = √(АВ² - АН²)  = √(225 - 144) = √81 = 9 см

Sabc = AC · BH / 2 = 24 · 9 / 2 = 108 см²

4. Меньшая диагональ ромба равна 12 см, а один из углов - 60°. Найдите вторую диагональ и сторону ромба.

ΔABD равнобедренный (AB = AD как стороны ромба) и ∠BAD = 60°, значит ΔABD равносторонний. Тогда АВ = AD = BD = 12 см.

По свойству параллелограмма сумма квадратов диагоналей равна сумме квадратов сторон параллелограмма:
AC² + BD² = 4·AB²
AC² = 4·12² - 12² = 3·12²
AC = 12√3 см
 
5. Большее основание и большая боковая сторона прямоугольной трапеции равны а см, а один из углов - 60°. Найдите площадь трапеции.

AD = DC = a см, ∠ADC = 60°, значит ΔADC равносторонний.
Проведем высоту трапеции СН. Она является высотой и медианой равностороннего треугольника ADC, тогда СН = а√3/2 см, АН = НD = а/2.
СН ║ АВ (как перпендикуляры к одной прямой) и СН = АВ (как высоты трапеции), тогда АВСН - прямоугольник, значит, ВС = АН = а/2 см.
Sabcd = (AD + BC)/2 · CH = (a + a/2)/2 · a√3/2 = 3a²√3/8 см²

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти периметр прямоугольника, если длина одной стороны равна 15 см, а другой – в 3 раза меньше.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

rusart3
istok11
buyamel
volodin-alexander
kononova_Pavel689
Vasilevna_Shabanova1502
cat2572066
partners
самир1078
molodoychek
olesya-cat8601
rezh2009766
Irinagarmonshikova
Vitalevich1799
arevik2307