Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
1)Формула площади параллелограмма выглядит так: S=h*b,где b - основание параллелограмма, h - высота, проведенная к этому основанию. Пусть h=x, тогда b=2x. Составим уравнение: х*2х=8 см2; 2х^2=8; х^2=4; х=2=h. Теперь найдем основание: 2*2=4 см. 2) В параллелограмме противоложные стороны попарно равны. Значит, можно опять составить уравнение: 2*4+2х=20см, где 2*4 - две известные стороны,2х - две неизвестные стороны, а 20 см - периметр. Решаем: 8+2х=20; 2х=12; х=6. ответ: 1) 2 см; 2) 4 см; 3) 6 см.
---
O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r.
AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ?
Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
ΔAPC =ΔBPD (по катетам ) ⇒AC =DB =√(10² +16²) =2√(5² +8²) =2√89 (см).
ΔAPD равнобедренный прямоугольный треугольник
⇒∠ADP || ∠ADC|| =∠DAP=45° .
Следовательно :
R =AC/2sin∠ADC =AC/2sin45° =(2√89)/(2*1/√2) =√178 (см).