Боковая грань усечённой пирамиды - равнобокая трапеция с основаниями 2 и 4 см и острым углом при большем основании, равным 60 градусов.
Боковое ребро L пирамиды равно: L = ((4 - 2)/2)/cos 60° = 1/(1/2) = 2 см.
Наклонная высота h боковой грани равна:
h = √(L² -((4-2)/2)²) = √(4 - 1) = √3 см.
Теперь проведём вертикальное сечение пирамиды через наклонные высоты противоположных боковых граней.
В сечении получим равнобокую трапецию с основаниями 2 и 4 см, боковые стороны которой равны √3 см.
Высота Н такой трапеции равна высоте пирамиды
Н = √((√3)² - ((4-2)/2)²) = √(3 - 1) = √2 см.
ответ: высота пирамиды равна √2 см.
Поделитесь своими знаниями, ответьте на вопрос:
Відношення площ двох трикутників із кутами 40° і 50° дорівнює 16. Чому дорівнює відношення їх периметрів?
Величину его можно найти двумя
Один из них - из треугольника ВСД по двум сторонам и углу между ними по теореме косинусов:
ВД = √(4²+4²-2*4*4*cos 120) =√(16+16-(-16) = √48 =4√3.
угол между B1D и плоскостью ABC равен:arc tg (6/(4√3) = frc tg (3 / (2√3)) = arc tg 0,86603 =
= 0,713724 радиан = 40,89339°.
2) Угол между B1A и плоскостью BCC1 определяется в треугольнике АВ₁К, где АК - высота основы, В₁К - проекция диагонали АВ₁ на боковую грань.
АК = √(4²- (4/2)²) = √(16 - 4) = √12 = 2√3.
В₁К = √(6²+(4/2)²) = √(36+4) = √40 = 2√10.
Тогда Угол между B1A и плоскостью BCC1 равен:
α = arc tg (2√3 / 2√10) = √0.3 = 0,547723 = 0,501093 радиан = 28,71051°.