sveta073120
?>

Какую тайну не открыл Антипыч детям​

Геометрия

Ответы

krasnobaevdj3

Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость.   Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒  АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2  => KD=KB*2 = 10см.

ответ: KD=10см.

Акоповна

Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.

Точка М - центр описанной окружности.

Точка О - центр вписанной окружности.

Тогда R=2,5см, то есть ВМ=2,5см.

Радиус вписанной окружности равен по формуле:

r=(AC+BC-АВ)/2 = 2/2=1см.

Итак, СН=r=1см => HB=3-1=2см.

PB=HB=2см (касательные из одной точки).

Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:

ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .

ответ: расстояние между центрами окружностей равно

√1,25 ≈ 1,12 см.

Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:

d² = R² - 2·R·r.

В нашем случае R = 2,5см, а r = 1cм.

тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.


Найдите расстояние между центрами вписанной и описанной окружностей прямоугольного треугольника с ка

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Какую тайну не открыл Антипыч детям​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

petr2077
Никита
Александрович_Викторовна
vkorz594
Nadegdasb
elenasnikitina84
marinadetsad
bruise6
tat72220525
Рощак_Ольга573
naratnikova
savva-vika
Irinalobanowa
смирнов1127
rstas