Назовем хорду АВ. Через точку В проведем касательную, из точки А проведем перепндикуляр АС к касательной-это и будет расстоянием от А до касательной. Получили прямоугольный треугольник АВС.
Теперь проведем диаметр окружности перпедикулярно хорде АВ. Он будет делить эту хорду пополам. Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам. Точку пересечения хорды и диаметра назовем К .
Проведем радиус ОВ. Так как ОВ перпендикулярен касательной и АС перпендикулярен касательной, то ОВ//АС. Углы 1 и 2 накрест лежащие, значит они равны.
Рассмотрим треугольники АВС и ВОК: они прямоугольные и имеют по равному острому углу, значит они подобны. Из подобия следует, что ОВ:АВ=АС:ВК => ОВ:12=6:8 => ОВ=9
ответ: 9см.
Logukate
25.03.2021
1). Ромб - четырёхугольник с равными сторонами. Одна из диагоналей = 6 см => половина диагонали = 3 см (так как в точке пересечения диагоналей ромба диагонали делятся пополам под прямым углом). 2). У нас получился прямоугольный треугольник, где сторона ромба является гипотенузой, и одним из катетов этого треугольника является половина диагонали. 3). По теореме Пифагора найдём 2-й катет: 5² = 3² + х² => х² = 25 - 9 = 16 => х = 4 см. Это мы нашли второй катет и половину второй диагонали соответственно. 4). Вторая диагональ = 4*2 = 8 см. 5). Площадь ромба находится по этой формуле: S = (d1*d2)/2 = (8*6)/2 = 48/2 = 24 см². ответ: 24 см².
Рисунок во вложении.
Назовем хорду АВ. Через точку В проведем касательную, из точки А проведем перепндикуляр АС к касательной-это и будет расстоянием от А до касательной. Получили прямоугольный треугольник АВС.
Теперь проведем диаметр окружности перпедикулярно хорде АВ. Он будет делить эту хорду пополам. Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам. Точку пересечения хорды и диаметра назовем К .
Проведем радиус ОВ. Так как ОВ перпендикулярен касательной и АС перпендикулярен касательной, то ОВ//АС. Углы 1 и 2 накрест лежащие, значит они равны.
Рассмотрим треугольники АВС и ВОК: они прямоугольные и имеют по равному острому углу, значит они подобны. Из подобия следует, что ОВ:АВ=АС:ВК => ОВ:12=6:8 => ОВ=9
ответ: 9см.