Можно решить
Из прямоуг. треуг-ка АОВ найдем катеты( равны радиусу) 2Rквад = 324, или Rквад = 162. Теперь по известной формуле для прямоуг. тр-ка найдем искомое расстояние, а именно - высоту, опущенную на гипотенузу:
h = Rквад/АВ = 9см
треугольник АОВ - равнобедренный и прямоугольный по теореме Пифагора ОА = ОВ = 18 : sqrt2 = 9*sqrt2 обозначим h - расстояние от точки О до хорды, этот отрезок будет перпендикулярен хорде тогда площадь треугольника АОВ = ОА*ОВ/2 = АВ*h/2 отсюда h = ОА*ОВ/АВ = (9*SQRT2)^2/18 = 9 см
Поделитесь своими знаниями, ответьте на вопрос:
Высоты, проведённые к боковым сторонам AB и BC равнобедренного треугольника ABC, пересекаются в точке M. Прямая BM пересекает основание AC в точке N. Определи ∡ABN, если ∡ABC=34°. ответ: ∡ABN =
Параллельные плоскости α и β рассечены плоскостью треугольника ВАС . Если две параллельные плоскости пересечены третьей. то линии их пересечения параллельны.
А₁В₁|| А₂В₂.
Параллельные плоскости рассекают стороны угла на пропорциональные части.
В треугольниках АА₁В₁ и АА₂В₂ углы равны - один общий при А и по два соответственных при параллельных прямых и секущих (стороны угла).
Следовательно, эти треугольники подобны.
Из их подобия следует отношение АА₂:АА₁=АВ₂:АВ₁
6:АА₁=3:2
3АА₁=12
АА1=12:3=4 см