32 cм³ или 8√2 см³
Объяснение:
Обозначим:
сторону основания призмы а - ?
высоту призмы h - ?
Диагональ основания призмы d = a√2
Диагональ призмы D = √(d² + h²) = √(2a² + h²) = 6см
Тогда 2а² + h² = 36 (1)
Площадь боковой поверхности призмы 4аh = 32 (2)
Из (2) получим а = 8/h (3)
Подставим (3) в (1) и получим
2 · 64/h² + h² = 36
128 + h⁴ = 36h²
h⁴ - 36h² + 128 = 0
Замена t = h²
t² - 36t + 128 = 0
D = 1296 - 512 = 784
√D = 28
t₁ = (36 - 28)/2 = 4
t₂ = (36 + 28)/2 = 32
Тогда h₁ = 2(cм) и h₂ = 4√2(см)
а₁ = 8/2 = 4(см) и а₂ = 8 : 4√2 = √2(см)
В 1-м случае объём призмы V = a² · h = 16 · 2 = 32(cм³)
Во 2-м случае V = a² · h = 2 · 4√2 = 8√2(cм³)
Поделитесь своими знаниями, ответьте на вопрос:
Катеты прямоугольного треугольника равны 24 и 7 найдите проекцию меньшего катета на гипотенузу. рисунок, дано, найти и решение и через abcd.
Найти: проекцию меньшего катета на гипотенузу.
Решение:
--- 1 ---
Гипотенуза по т. Пифагора
√(7² + 24²) = √(49 + 576) = √625 = 25
--- 2 ---
Площадь треугольника АСД через катеты
S = 1/2*7*24 = 7*12 = 84 см²
Площадь треугольника АСД через гипотенузу и высоту
S = 1/2*25*ВД = 25/2*ВД
Приравниваем
25/2*ВД = 84
ВД = 168/25
--- 3 ---
В ΔАВД по т. Пифагора
7² = (168/25)² + АВ²
АВ² = (7*25/25)² - (168/25)² = (175/25)² - (168/25)² = (175 - 168)(175 + 168)/25² = 7*343/25² = 49²/25²
AB = 49/25
Всё :)