В основании правильной четырехугольной пирамиды лежит квадрат, а боковые грани пирамиды - равные равнобедренные треугольники. Высота пирамиды опускается из вершины (S) пирамиды в центр (O) основания, т.е. в точку пересечения диагоналей квадрата.В прямоугольном треугольнике SCO:Боковое ребро пирамиды SC = 8см - гипотенузаВысота пирамиды SO - искомый катет, противолежащий ∠SCO = 30°Катет, противолежащий углу 30°, равен половине гипотенузы.SO = 1/2 * SCSO = 1/2 * 8 = 4 (cм)Высота пирамиды равна 4 см
dimoni86
17.08.2022
1) Назовем треуг. АBC. Рассмотрим его. Трег. равнобедр. значит его бок.стороны по 13 см. Проведем высоту из вершины В( не из основания, а из верхнего угла треуг.) Высота по св-тву равнобедр. треуг. явл. медианой и биссек. Значит высота ВD поделит основание АС на равные части( 10:2=5). Рассмотрим треуг. АВD. BD- катет, значит найдем его по теореме Пифагора. ( 13-5 возведем в квадрат: 169-25=144. 144 это 12 в квадрате.) BD=12. А дальше просто по формуле найдем площадь. S= 1/2 a•h S= 1/2 10•12=60 ответ:60 см2.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
решить пример по геометрии"координаты и векторы в пространстве"
В основании правильной четырехугольной пирамиды лежит квадрат, а боковые грани пирамиды - равные равнобедренные треугольники. Высота пирамиды опускается из вершины (S) пирамиды в центр (O) основания, т.е. в точку пересечения диагоналей квадрата.В прямоугольном треугольнике SCO:Боковое ребро пирамиды SC = 8см - гипотенузаВысота пирамиды SO - искомый катет, противолежащий ∠SCO = 30°Катет, противолежащий углу 30°, равен половине гипотенузы.SO = 1/2 * SCSO = 1/2 * 8 = 4 (cм)Высота пирамиды равна 4 см