Андрей-Викторовна1910
?>

Площа квадрата ABCD дорівнює 10см². Чому дорівнює площа прямокутника BMKD?​

Геометрия

Ответы

Головин662

Найдем S(AOB):

S(AOD):S(BOC) =16:9=k2

k=4/3

k=4/3=AO/OC

S(AOB)=0,5•BL•AO

S(BOC)=0,5•BL•OC

S(AOB)/S(BOC) =(0,5•BL•AO)/(0,5•BL•OC)=AO/OC=4/3

S(AOB)/S(BOC) =4/3

S(AOB)=4/3•S(BOC)=4/3•9=12

S(ABCD)=12+12+16+9=49

Объяснение:

Площади ∆AOB и ∆DOC равны. Так как площади ∆ABD и ∆ACD равны. У них общее основание и высоты равны.

S(AOB)=S(ABD)-S(AOD)=S(ACD)-S(AOD)=S(COD)

S(AOD)≠S(BOC)

Следовательно, у этих треугольников AD и BC основания трапеции.

∆AOD ~ ∆ BOC (углы BOC=AOD как вертикальные), а

стороны пропорциональны их отношение площадей равно квадрату коэффициента подобия k.

Инна_Nina1182
Пусть ad = a1d1 — равные биссектрисы, ∠a = ∠a1, ac = a1c1 — равные стороны. в δаdс = δa1d1c1: ∠dac = ∠d1a1c1 (т.к. ∠dac половина угла ∠bac ∠dac = ∠bac : 2 = ∠b1a1c1 : 2 = ∠d1a1c1). ad = a1d1, ас = а1с1. (по условию: ad = a1d1 — равные биссектрисы, aс = a1c1 — равные прилежащие стороны). таким образом, δadc = δа1d1c1 по 1-му признаку равенства треугольников, откуда ∠с = ∠с1 как лежащие против равных сторон в равных треугольниках) в δabcи δа1в1с1: ас = а1с1, ∠а = ∠а1 (по условию) ∠с = ∠с1. таким образом, δabc = δа1в1с1 по 1-му признаку равенства треугольников, что и требовалось доказать.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Площа квадрата ABCD дорівнює 10см². Чому дорівнює площа прямокутника BMKD?​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Захаров-Иванович
Asplaksina
xsmall1
spadikov
alesia1986
Evelina Mariya
irina25095462
Ka2ffka141
Кристина_Memmedov
kirillprotopopov1
vik1223
Yurevna_Kharkchinov1302
Andreeva
info49
Руслан1360