korotinadasha07
?>

Пусть ABCD-параллелограмм. Докажите, что точки пересечения медиан треугольников ABC и DCA принадлежат диагонали BD и делят её на три равные части. Если можно, то с рисунком.

Геометрия

Ответы

kalterbrun

Диагонали параллелограмма точкой пересечения делятся пополам.

О - точка пересечения диагоналей, AO=CO, BO=DO=1/2 BD

BO - медиана в △ABC, DO - медиана в △CDA.

Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины.

E - точка пересечения медиан в △ABC,

BE=2/3 BO =1/3 BD, EO=1/3 BO =1/6 BD

F - точка пересечения медиан в △CDA,

DF=2/3 DO =1/3 BD, FO=1/3 DO =1/6 BD

EF= EO+FO =2/6 BD =1/3 BD

Объяснение:


Пусть ABCD-параллелограмм. Докажите,что точки пересечения медиан треугольников ABC и DCA принадлежат
Elenabolt77

Б.) 52/4=13 см сторона ромба10:2=5 см половина диагонали ромба13*13=169 квадрат стороны 5*5=25 квадрат половины диагонали169-25=144 квадрат половины другой диагоналиКорень из 144 равен 12 см - половина второй диагонали12*2=24 см вторая диагональ

А.) А) треугольник АОВ прямоугольный, и АО = одна вторая АС, ВО = одна вторая ВD. Значит АО = 3дм а ВО = 4дм. По теореме Пифагора АВ = корень квадратный из 3 во второй степени + 4 во второй степени = корень квадратный из 9 + 16 = корень квадратный из 25 = 5дм.ответ: 25дм

Объяснение:

Zhanna417
треугольнике ABC AC=CB=10см, угол A=30 градусов, BK- перпендикуляр у плоскости треугольника и равен 5 см. Найти расстояние от K до AC 

Рассмотрим образованную пирамиду АВСК. КВ перпендикулярно АВС, значит нам необходимо найти длину высоты, опущенной в грани АСК из вершины К на АС. По теореме о трех перпендикулярах ее проекция на плоскость АВС будет перпендикулярна АС. Обозначим точку пересечения высоты с АС через Н. Тогда нужно найти КН. 
Рассмотрим основание пирамиды - треугольник АВС. Он равнобедренный АС=ВС=10, с углом у основания А=30 градусов. Опустим высоту из вершины треугольника С на АВ - СМ. Высота, опущенная из точки С, будет и биссектрисой, и медианой треугольника. То есть АМ=МВ. Треугольник АСМ - прямоугольный, с одним из осмтрых углов = 30 градусов, значит катет, лежащий против этого угла, равен половине гипотенузы: АМ=1/2*АС, АМ=1/2*10=5 (см). По теореме Пифагора найдем второй катет СМ: 
CM=sqrt(AC2-AM2) 
CM=sqrt(100-25)=sqrt75=5sqrt3 
BH- проекция КН на плоскость основания АВС, и, как было уже отмечено, ВН перпендикулярна АС. Рассм отрим треугольники АНВ и АМС- они подобны: 
АН/АМ=НВ/МС=АВ/АС 
НВ/МС=АВ/АС 
НВ=МС*АВ/АС 
НВ=5*(2*5sqrt3)/10=5sqrt3 
Треугольник КНВ - прямоугольный (КВ перпендикулярно плоскости АВС). По теореме Пифагора найдем КН: 
KH2=KB2+HB2 
KH=sqrt(25+75)=sqrt100=10 (см)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Пусть ABCD-параллелограмм. Докажите, что точки пересечения медиан треугольников ABC и DCA принадлежат диагонали BD и делят её на три равные части. Если можно, то с рисунком.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Кононова-БЕСКРОВНАЯ
mvolkov8
Busyashaa
Novikova
Оздоевский
proporcia46
N-odes-art-school410
nataliaterekhovasinger2
iptsr4968
КОРМИЛИЦЫНА
Bulanova
Belov
rozhkova
Евгений1286
Grishanin