ответ: теорема доказана.
Объяснение:
Пусть ΔABC - данный равнобедренный треугольник, у которого AC - основание, AB и BC - боковые стороны. Проведём из точек A и C биссектрисы AD и CE. Пусть F - точка их пересечения. Нам нужно доказать, что AD=CE. А так как AD=AF+DF, а CE=CF+EF, то для этого достаточно доказать, что AF=CF, а DF=EF.
1. Рассмотрим ΔAFC. Так как ΔABC - равнобедренный, то ∠A=∠C, а так как AD и CE - биссектрисы этих углов, то ∠CAF=1/2*∠A, а ∠ACF=1/2*∠C. Отсюда следует, что ∠CAF=∠ACF, а это значит, что ΔAFC - равнобедренный с основанием AC. Отсюда следует, что AF=CF, и теперь остаётся доказать, что DF=EF.
2. Для этого рассмотрим треугольники AEF и CDF. Так как ∠EAF=1/2*∠A, а ∠DCF=1/2*∠C, то ∠EAF=∠DCF. А углы AFE и CFD равны как вертикальные. И так как при этом - по доказанному - AF=CF, то треугольники AEF и CDF равны по второму признаку равенства треугольников. А из равенства этих треугольников следует, что EF=DF. Теорема доказана.
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике АВС известно, что АВ=26дм, В=30°, С=90°.постройте чертеж и найдите АС
ΔАВС - прямоугольный (∠С = 90°).
АВ = 26 дм, ∠В = 30°.
Найти :АС = ?
Решение :В прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы.Следовательно, АС = АВ/2 = 26 дм/2 = 13 дм.
ответ :13 дм.