Чертим окружность с центром О.
Через О проводим диаметр МН и перпендикулярно к нему радиус ОС, (как строить срединный перпендикуляр - ниже) .
Соединим С и Н отрезком и разделим его пополам:
Для этого из т.С и Н чертим полуокружности (можно тем же радиусом, что и первая) так, чтобы они пересеклись по обе стороны от СН.
Точки пересечения полуокружностей соединим прямой, которая пройдет через О, т.к. ∆ НОС - равнобедренный, а срединный перпендикуляр равнобедренного треугольника - биссектриса. Точку пересечения с окружностью обозначим А. Угол СОА=45°.
Ставим ножку циркуля в т. С ( или А - не имеет значения) и раствором циркуля, равным радиусу первой окружности, делаем на ней насечку. Отмечаем т.В. ∆ ВОС - правильный, так как ВО=СО=ВС=R. ⇒
Угол ВОС=60°.
Угол ВОА=60°+45°=105° Построение завершено.
1.) Радиус цилиндра 2 см, а диагональ осевого сечения 5 см. Найдите:
a) Высоту цилиндра
Прямоугольный треугольник. Т. Пифагора
Н² = 5² - 4² = 9, ⇒ Н = 3
б) Площадь осевого сечения
Осевое сечение - прямоугольник
S = 3*4 = 12
в) Диаметр основания
Диаметр основания = 2 радиуса = 4
2.) Образующая конуса равна 6 м и наклонена к плоскости основания под углом 60 градусов. Найдите площадь основания конуса, площадь осевого сечения.
Прямоугольный треугольник. Гипотенуза = 6, катет = радиусу лежит против угла 30, значит, R = 3
высота конуса = √(36 - 9) = √27 = 3√3
площадь основания конуса = S кр = πR² = π*9= 9π
Осевое сечение = треугольник, котором боковые стороны = 6, основание = 6 и высота = 3√3
S = 1/2*6*6*3√3 = 54√3
3.) Найдите площадь большого круга и длину экватора шара, если его радиус 2 м.
S= πR² = π*4 = 4π(м²)
C = 2πR = 2π*2 = 4π(
Поделитесь своими знаниями, ответьте на вопрос:
Знайдіть центр і радіус кола, заданого рівнянням х²+у²+2х-4у-4=0
решение на фотографии