можно было и больше поставить, задачка прикольная).. итак поехали:
стороны основания 5, 12 и 13 - это стороны прямоугольного треугольника
(25+144=169 теорема пифагора), а значит радиус вписаной окружности в основание равен р=(5+12-13)/2=2.. есть такая формула)
т.к. угол наклона у граней одинаковый, то и высоты у треугольников составляющих эти грани тоже будут одинаковы и будут составлять с высотой пирамиды и радиусом вписаной окружности в основание одинковые прямоугольные треугольники, и будут равны:
Н=корень( (4*корень(2))^2 + 2^2 ) = 6
площадь боковой поверхности пирамиды равна сумме площадей её граней, найдём каждую полупроизведением высот на их основания:
S= 5*6/2+12*6/2+13*6/2 = 15+36+39 = 90
Поделитесь своими знаниями, ответьте на вопрос:
параллелограмме ABCD диагонали равны: AC = BD. Найди x.
х^2+2х-3 = х - 1
х^2+х-2 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-1)/(2*1)=(3-1)/2=2/2=1;
x_2=(-√9-1)/(2*1)=(-3-1)/2=-4/2=-2.
По заданию принимаем отрицательное значение х = -2.
Уравнение касательной:
Для у = х² + 2х - 3 находим:
f(xo) = 4 - 4- 3 = -3
f'(xo), сначала находим f'(x) = 2х + 2, f'(xo) = 2*(-2) + 2 = -2.
Укас = -3 + (-2)(х - (-2)) = -3 - 2х - 4 = -2х - 7.
ответ: Укас = -2х - 7.