По условию в фигуру можно вписать окружность радиуса r = 7, и её центр лежит в середине диагонали BD. Диагональ BD является биссектрисой углов B и D четырехугольника ABCD. То есть фигура симметрична относительно этой диагонали. Это означает, что диагональ AC = 50 перпендикулярна диагонали BD и делится ею пополам. Дальше, r = (BD/2)*sin(B/2) = (BD/2)*sin(D/2); что означает, что углы B и D равны. То есть четырехугольник является ромбом, а центр окружности совпадает с точкой пересечения диагоналей и делит ОБЕ диагонали пополам. Легко увидеть, что этот ромб составлен из 4 прямоугольных треугольников с высотой 7 и одним из катетов 25. Не знаю, как - кому, а мне так кажется, что этот треугольник подобен Пифагоровому треугольнику (7,24,25), причем большему катету 24 соответствует половина диагонали AC, то есть коэффициент подобия равен 25/24; все это можно и так описать - проекция половины диагонали AC на боковую сторону равна 24, так как 24^2 = 25^2 - 7^2; и (BD/2)/7 = 25/24; То есть BD/2 = 7*25/24; S = 50*7*25/24 = 4375/12;
Грачева мураховская
10.08.2022
Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Значит у медианы АА1=3√3 АО/ОА1=2/1, тогда ОА1=√3 Рассмотрим прямоугольный ΔСОВ, в нем < СОВ=90 по условию. Т.к. медиана, опущенная на гипотенузу прямоугольного треугольника равна половине гипотенузы, то ОА1=1/2СВ, значит СВ=2ОА1=2√3, А1С=А1В=СВ/2=√3 Из прямоугольного ΔАСА1 найдем катет АС АС=√(АА1²-А1С²)=√((3√3)²-(√3)²)=√24=2√6 АВ1=СВ1=АС/2=√6 Из прямоугольного ΔАВС найдем гипотенузу АВ АВ=√(АС²+ВС²)=√((2√6)²+(2√3)²)=√36=6 АС1=С1В=АВ/2=3 Значит медиана СС1=1/2АВ=3 Из прямоугольного ΔСВ1В найдем гипотенузу ВВ1: ВВ1=√(СВ1²+СВ²)=√((√6)²+(2√3)²)=√18=3√2 Получилось медианы СС1=3, ВВ1=3√2, значит ВВ1>СС1 ответ: ВВ1=3√2.
Диагональ BD является биссектрисой углов B и D четырехугольника ABCD. То есть фигура симметрична относительно этой диагонали. Это означает, что диагональ AC = 50 перпендикулярна диагонали BD и делится ею пополам.
Дальше, r = (BD/2)*sin(B/2) = (BD/2)*sin(D/2);
что означает, что углы B и D равны.
То есть четырехугольник является ромбом, а центр окружности совпадает с точкой пересечения диагоналей и делит ОБЕ диагонали пополам.
Легко увидеть, что этот ромб составлен из 4 прямоугольных треугольников с высотой 7 и одним из катетов 25.
Не знаю, как - кому, а мне так кажется, что этот треугольник подобен Пифагоровому треугольнику (7,24,25), причем большему катету 24 соответствует половина диагонали AC, то есть коэффициент подобия равен 25/24;
все это можно и так описать - проекция половины диагонали AC на боковую сторону равна 24, так как 24^2 = 25^2 - 7^2; и (BD/2)/7 = 25/24;
То есть BD/2 = 7*25/24;
S = 50*7*25/24 = 4375/12;