Находим координаты векторов и модули (вложение 1).
Находим модуль вектора а, скалярное произведение векторов а и b, угол между векторами c и d (вложение 2).
Приводим более подробное решение по определению угла меду векторами c и d (пусть они записаны как a и b).
Найдем скалярное произведение векторов:
a · b = ax · bx + ay · by + az · bz = 2 · 5 + (-9) · (-1) + (-10) · 5 = 10 + 9 - 50 = -31 .
Найдем длины векторов:
|a| = √ax2 + ay2 + az2 = √22 + (-9)2 + (-10)2 = √4 + 81 + 100 = √185 .
|b| = √bx2 + by2 + bz2 = √52 + (-1)2 + 52 = √25 + 1 + 25 = √51 .
Найдем угол между векторами:
cos α = (a · b ) / |a||b| .
cos α = -31 / (√185*√51) =
= - 31/√9435 = -31*√9435 / 9435 ≈ -0.319146.
Поделитесь своими знаниями, ответьте на вопрос:
Угол при вершине равнобедренного треугольника равен 56°. на боковой стороне треугольника как на диаметре построена полуокружность, которая другие стороны треугольника делит на 3 дуги. найдите градусные меры полученных дуг.
АС = ВС
∠С=56°
М и Е - точки пересечения полуокружности со сторонами АВ и ВС
Найти: дуга СЕ, дуга ЕМ, дуга АМ.
∠АСЕ - вписанный угол ⇒ дуга АМЕ = 2*∠АСЕ = 2*56 = 112°
дуга СЕ = 180° - дуга АМЕ = 180 - 112 = 68°
∠САВ = (180-56)/2 = 62° (так как треугольник АВС равнобедреный)
∠САМ - вписанный угол ⇒ дуга СЕМ = 2*∠САМ = 2*62 = 124°
дуга АМ = 180° - дуга СЕМ = 180 - 124 = 56°
дуга ЕМ = 180 - дуга СЕ - дуга АМ = 180 - 68 - 56 = 56°
ответ: дуга СЕ = 68°, дуга ЕМ, = 56°, дуга АМ = 56°.