ΔABC - равнобедренный;
высота BD = 6,4 см;
AB = BC = 12,8 см.
Найти:∠A = ?°; ∠B = ?°; ∠C = ?°.
Решение:Высота, проведённая к основанию равнобедренного треугольника, является и медианой, и биссектрисой.
⇒ AD = DC, ∠ABD = ∠BDC (по выше указанному свойству).
⇒ ΔABD = ΔCBD (по двум сторонам и углу между ними).
Нам также известно что равные треугольники прямоугольные (высота BD).
Если катет равен половине гипотенузы, то напротив лежащий угол составляет 30°.
Боковые стороны равнобедренного ΔABC - гипотенузы прямоугольных ΔABD и ΔСBD, а высота - общий катет.
Как мы уже отметили, этот общий катет равен половине гипотенузы, так как 6,4 * 2 = 12,8 см. Поэтому ∠A = ∠C = 30°.
Сумма острых углов в прямоугольном треугольнике равна 90°.
⇒ ∠ABD = ∠CBD = 90° - 30° = 60°. ⇒ ∠B = 120°.
ответ: ∠A = ∠C = 30°, ∠B = 120°.цилиндр АВСD.
BD = 10 см.
∠BDС = 60˚
Найти:D - ?
Решение:Осевое сечение цилиндра это прямоугольник.(т.к. основания цилиндра равны и параллельны и образующие цилиндра равны и параллельны друг другу)
При пересечении цилиндра плоскостью, параллельной оси цилиндра т.е. перпендикулярной основанию, также получается прямоугольник.
Диагональ BD образует прямоугольный △СBD
Сумма острых углов прямоугольного треугольника равна 90°.
=> ∠DBC = 90˚ - 60˚ = 30˚
Если угол прямоугольного треугольника равна 30°, то напротив лежащий катет равен половине гипотенуза.
=> BD = 2DC
DC = 10/2 = 5 см
DC - и есть диаметр основания D этого цилиндра.
ответ: 5 см.Поделитесь своими знаниями, ответьте на вопрос:
От даного луча отложить угол равный одной четверной даного угла
Для этого:
1. Циркулем, установленным в вершину данного угла проводим дугу произвольного радиуса и в местах пересечения этой дуги со сторонами угла получаем точки E и F. Замеряем циркулем расстояние между точками E и F.
2. Выполняем такие же действия на данном луче:
Циркулем, установленным в вершину данного луча проводим дугу радиуса ВЕ, а из точки Е проводим дугу радиусом EF. На пересечения этих дуг получаем точку F. Соединив точки В и F, получаем угол EBF, равный данному.
3. Разделим полученный угол на две равные части.
Для этого циркулем из точек Е и F проводим окружности радиусом EF. В местах пересечения этих окружностей получим точки P и Q, соединив которые, получим угол РВЕ, равный половине данного угла.
4. Разделив этот угол пополам, методом, описанным выше, получим искомый угол DBE, отложенный от луча ВС и равный 1/4 данного угла.