denblacky
?>

Луч ос делит прямой угол aob так, что угол аос на 34° больше угла вос. найдите величину угла вос.

Геометрия

Ответы

edvard-b
BOC=(90-34):2=28
(Мы вычитаем из прямого угла разницу между AOC и BOC и делим пополам)
P.s. AOC= BOC+34
tvtanya80
На чертеже точки касания N и N1 изображены совпадающими, но это еще надо доказать. Поэтому СНАЧАЛА я не считаю их совпадающими. То есть окружность O1 касается AC в точке N, а окружность O2 - в точке N1 (слова "с центром" дальше буду опускать, если и так ясно).
Для треугольника ABC точки касания с O1 делят стороны на три отрезка AN, CN и еще один (точнее, два равных) из вершины B. Я обозначу его например буквой x.
Тогда очевидно
AN + CN = AC;
AN + x = AB;
CN + x = BC;
Если вычесть из второго третье, получится AN - CN = AB - BC; если теперь сложить это с первым, то 
AN = (AC + AB - BC)/2;
Точно так же для треугольника ACD получается 
AN1 = (AC + AD - CD)/2; и нигде не предполагается, что AN = AN1; это надо доказать.
Весь четырехугольник ABCD является ОПИСАННЫМ, то есть AD + BC = AB + CD;
или AD - CD = AB - BC; или AC + AD - CD = AC + AB - BC; то есть AN = AN1, и точки N и N1 совпадают, это просто одна точка N. 
Последствия этого очень велики. :) Окружности O1 и O2 касаются, AC является общей касательной, проведенной в точке касания N окружностей O1 и O2, и линия центров O1O2 перпендикулярна AC. 
Важно! - пока нигде не использовано, что ABCD - трапеция! Этот результат справедлив для любого выпуклого описанного четырехугольника.
Поэтому (см. чертеж) ∠KO1O2 = ∠CAD (стороны углов перпендикулярны), и треугольники KO1O2 и ACP подобны. CP - высота трапеции. Она равна
CP = 2R = 40; 
сумма радиусов окружностей равна O1O2 = 25; отсюда легко найти KO1 = 40 - 25 = 15; получился "египетский" треугольник :) то есть KO2 = 20;
Ну, и из подобия KO1O2 и ACP AC = 50 (поскольку СP = 2*KO2  :) )
Решить.трапеция abcd описана окло окружности радиуса 20. найти длину диагонали ac трапеции, если рас
PushkinaKurnosov984
А) (если второй признак- по стороне и двум прилежащим к ней углам)
Достаточно сказать, что углы 1) А и М; 2)B и К; 3)С и О равны.
В первом случае:
Углы В и С равны (по признаку равнобедренного треугольника)
Углы К и О равны (по признаку равнобедренного треугольника)
<В=<С= (180-<А)/2
<К=<О=(180-<М)/2
А так как <А=<М, то углы В, С, К, О тоже равны.
А треугольники АВС и МКО равны по стороне и двум прилежащим к ней углам.
Во втором и третьем случае:
Углы В и С равны (по признаку равнобедренного треугольника)
Углы К и О равны (по признаку равнобедренного треугольника)
А так как <В=<К (или <С=<О), то углы В, С, К, О тоже равны.
А треугольники АВС и МКО равны по стороне и двум прилежащим к ней углам
Б) (если третий признак - по трем сторонам)
1) АВ=МК; 2)АВ=МО; 3) АС=МК; 4)АС=МО
Так какАВ=АС И МК=МО( по признаку равнобедренного треугольника), то АВ=АС=МК=МО
Значит, треугольники АВС и МКО равны по трем углам

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Луч ос делит прямой угол aob так, что угол аос на 34° больше угла вос. найдите величину угла вос.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Mukhlaev-Olga
mzia-mzia-60682
ss2911
ravshandzon3019835681
Египтян2004
sergeevna
ainred
ziyaevak
НатальяРуктешель472
kapral1812
Kolosove5465
Александрович_Викторовна
b3dllam
smnra219
Gor Anatolevich