1) Проведём произвольно наклонную(ребро двугранного угла).По левую сторону от неё обозначим точку А и опустим из неё перпендикуляр на ребро в точку С1 . По правую сторону от линии ребра отмети м точку А1. Соединим её с точками А и С1. Получим прямоугольный треугольник АС1А1.(на чертеже углы выглядят произвольно). В данном треугольнике АС1=51 расстояние до ребра первой точки. АА1 расстояние от точки до другой грани. Угол АА1С прямой . Аналогично строим второй треугольник ВВ1С2. Эти треугольники подобны поскольку они прямоугольные (АА1 и ВВ1 перпендикулярны к грани) и уних общий линейный угол двугранного угла. Отсюда АА1/АС1=х/34. Где x расстояние до грани от другой точки. x=15*34/51=10.
2)10 сантиметров.
Объяснение:
из KN||AC и AK=KB мы узнаем, что KN является средней линией треугольника ABC.
т.к. KN - средняя линия, ее длина равняется половине АС, то есть 6 сантиметрам.
т.к. отрезок МК перпендикулярен плоскости треугольника АВС треугольник MKN является прямоугольным.
По теореме Пифагора MN^2=MK^2+KN^2
MN^2=6^2+8^2
MN^2=36+64
MN=10 см
1. Найдем направляющий вектор прямой, являющейся пересечением плоскостей x-2y+3z-4=0 и x+y-5z+9=0. Для этого вспомним, что в уравнении плоскости:
ax + by + cz + d = 0
коэффициенты (а, b, c) являются координатами вектора n, ортогонального плоскости. Так что мы имеем два вектора n1(1, -2, 3) и n2(1, 1, -5), которые ортогональны нашим плоскостям. Т. к. наша прямая лежит одновременно в обоих плоскостях, то она ортогональна обоим векторам n1 и n2. Соответственно направляющим вектором этой прямой может быть вектор, равный векторному произведению [n1, n2]. Итак, составляете матрицу векторного произведения, раскладываете ее по строке с символами i j k и получаете координаты направляющего вектора.
2. Т. к. плоскость параллельна оси ОХ, то на искомой плоскости всегда можно построить вектор с координатами (1, 0, 0). Действительно, предположим мы возьмем на плоскости точку М с координатами (а, b, c). Тогда на плоскости имеется и точка М1(a+1, b, c). Ведь если мы проведем из точки М (a, b, c) прямую, параллельную оси ОХ, то у всех точек этой прямой координаты у и z будут одинаковы, а изменяться будет лишь координата х.
Найдем координаты вектора ММ1(a +1 - a, b - b, с - с) = (1, 0, 0)
3. Теперь найдем точку, принадлежащую искомой плоскости. Предположим эта точка лежит на прямой пересечения двух плоскостей x-2y+3z-4=0 и x+y-5z+9=0. Предположим также, что координата z этой точки равна 0. Тогда, подставив в уравнения плоскостей z = 0 получим систему уравнений:
x - 2y - 4 = 0
x + y + 9 = 0
Решая эту систему получаем:
х = -14/3
y = -13/3
Итак мы нашли координаты точки А (-14/3, -13/3, 0), которая принадлежит искомой плоскости.
4. Теперь возьмем на искомой плоскости произвольную точку Х (х, y, z) и найдем координаты вектора АХ (x +14/3, y + 13/3, z) который пробегает все точки плоскости.
5. Таким образом у нас есть 3 вектора: направляющий вектор прямой, координаты которого Вы нашли в п. 1, вектор ММ1(1, 0, 0) и вектор АХ (x +14/3, y + 13/3, z). Все эти векторы компланарны. А это значит, что их смешанное произведение равно 0. Теперь составляем матрицу смешанного произведения этих векторов, поставив на первую строчку координаты вектора АХ (x +14/3, y + 13/3, z). Далее разложив матрицу по первой строке, приведя коэффициенты при х, у, z и приравняв полученное выражение к 0 Вы получите искомое уравнение плоскости.
Успехов!
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Найти углы ромба если угол между стороной и диагональю вас с обьяснением.
Дано:
ADBE - ромб.
DE - диагональ.
∠EDB = 54°.
Найти:
∠ADB = ?
∠DBE = ?
∠BEA = ?
∠EAD = ?
1) Диагонали ромба являются биссектрисами углов, из которых они исходят. Поэтому, ∠ADB = 2*∠EDB = 2*54° = 108°.
2) Сумма двух углов параллелограмма (ромб - частный случай параллелограмма), прилежащих к одной стороне, равна 180°. Следовательно, ∠ADB+∠DBE = 180° ⇒ ∠DBE = 180°-∠ADB ⇒ ∠DBE = 180°-108° ⇒∠DBE = 72°.
3) Противоположные углы параллелограмма равны (на рисунке выделены дугами). Следовательно, ∠ADB = ∠BEA = 108°, ∠DBE = ∠EAD = 72°.
ответ: 108°, 72°, 108°, 72°.