Дано:
∆АВС - прямоугольный.
ВЕ - биссектриса.
∠А = 30°
ВЕ = 6 см
Найти:
∠ВЕА; СЕ; АС
Решение.
Сумма углов прямоугольного треугольника равна 90°
=> ∠В = 90 - 30 = 60°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> ВС = 1/2АВ
∠ЕВА = ∠ЕВС = 60 ÷ 2 = 30° (т.к. ВЕ - биссектриса)
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> СЕ = 1/2ВЕ = 6 ÷ 2 = 3 см.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ВЕС = 90 - 30 = 60°
СУММА СМЕЖНЫХ УГЛОВ РАВНА 180°
=> ∠ВЕА = 180 - 60 = 120°
∠В = ∠А = 30°
=> ∆АЕВ - равнобедренный.
=> ЕВ = ЕА = 6 см, по свойству равнобедренного треугольника.
СА = 3 + 6 = 9 см
ответ: 120°; 9 см; 3 см.
Надеюсь, что все чертежи сможете выполнить сами.
1.
А)Отрезки ОА и ОВ называются радиусами. Их длина равна 3 см.
Б)АВ является радиусом и его длина равна 2R=2×3=6 см.
2.
Если расстояние между центрами двух окружностей больше суммы их радиусов, то окружности не имеют общих точек.
R(Центр K)+R(Центр М)<KM.
Запишем 1 см и 5 мм как 1,5 см.
2+1,5<5; 3,5<5.
ответ: Окружности не имеют общих точек.
3. Радиус равен половине Диаметра.
Запишем 3 см и 8 мм как 3,8 см.
R=½D=½×3,8=1,9 см или же 1 см 9 мм.
4. Диаметр окружности - отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка. Диаметр равен двум радиусам.
5. Круг - часть плоскости, лежащая внутри окружности.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь развертки цилиндра, если высота цилиндра равна 5 см, а радиус его основания 10 см