с прямым углом
, EF — биссектриса
,
, FG — искомый отрезок.
.
— биссектриса, то
(биссектриса
делит
на два равные угла).
(это следует из условия: так как
прямоугольный, то и
; так как
— расстояние от
до
, то
).
и
, то и третий угол первого треугольника равен третьему углу второго треугольника:
. Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:

.
является для обоих треугольников общей.
(второй признак равенства треугольников — по стороне и двум прилежащим к ней углам (
— сторона, а
— два прилежащих угла)).
соответствует
, тогда:
. Смотрите второй рисунок.

Поделитесь своими знаниями, ответьте на вопрос:
Его площадь равна: S = a²/(4tg(α/2)).
Так как заданная площадь сечения пирамиды плоскостью, проходит через середину ребра BC и параллельна плоскости DAC, то в рёбрах АДВ и СДВ линии сечения параллельны рёбрам АД и ДС - то есть получаем подобный треугольник, площадь которого пропорциональна квадрату коэффициента подобия.
Из условии следует, что этот коэффициент равен 1/2.
Тогда площадь заданного сечения в 4 раза меньше АДС.
ответ: площадь сечения равна:
S = a²/(16tg(α/2)).