Оксана759
?>

Вравнобедренном прямоугольном треугольнике гипотенуза равна 3√2 см. найдите острые углы и катеты

Геометрия

Ответы

muziumednogorsk
Так как по условию задачи треугольник прямоугольный, то один из углов = 90° Сумма углов в треугольнике равна 180° Так как по условию задачи гипотенуза равна 3√2, а треугольник равнобедренный, то катеты равны и углы при катетах равны: (180°- 90°):2=45° Найдём один из катетов: 3√2·сos45°=3√2·√2/2=6:2=3 см. Так как треугольник равнобедренный и катеты равны, то оба катета = 3см.
   ответ: острые углы=45°, катеты=3см

   Р.s.: √2/2 пишите дробью, у меня здесь нет этой функции - √2 в числителе (сверху), а 2 в знаменателе (внизу под дробью).
   Можете все обозначить буквами. треугольник АВС, угол А=90°, найти острые углы В и С. Тогда катетами будут АВ и АС
ainred

Пусть данная пирамида МАВС, МО - высота,  точка О - центр треугольника; угол ОМА=45°

МО⊥плоскости основания, ∆ МОА - прямоугольный. 

Сумма острых углов прямоугольного треугольника 90°, ⇒∠МАО=45°, 

∆ АОМ - равнобедренный. АО=МО=12  см.

О - точка пересечения медиан ∆ АВС, и по свойству медианы АО:НО=2:1. Тогда высота основания АН=12:2•3=18 см

АС=АН:sin 60°=18:√3/2=36:√3•2=12√3

              V=S•h:3

Формула площади правильного треугольника S= \frac{ a^{2} \sqrt{3} }{4}

S=144*3* \frac{ \sqrt{3} }{4} =36•3•√3 см² 

V=36•3•√3•12:3=432√3 см³

                     * * * 

Объём цилиндра равен произведению площади основания на высоту. Пусть основание вписанной призмы – ∆ АВС, АВ - гипотенуза, АС =m, угол АВС=f.

.Центр окружности, описанной вокруг прямоугольного треугольника, лежит в середине гипотенузы, а радиус равен её половине. 

⇒ радиус основания цилиндра равен половине АВ. 

АВ=m:sin f

R=0,5m:sin f

V=πr²•h

V= \frac{0,25m ^{2} }{sin ^{2} f} *h


Korikm

Пусть данная пирамида МАВС, МО - высота,  точка О - центр треугольника; угол ОМА=45°

МО⊥плоскости основания, ∆ МОА - прямоугольный. 

Сумма острых углов прямоугольного треугольника 90°, ⇒∠МАО=45°, 

∆ АОМ - равнобедренный. АО=МО=12  см.

О - точка пересечения медиан ∆ АВС, и по свойству медианы АО:НО=2:1. Тогда высота основания АН=12:2•3=18 см

АС=АН:sin 60°=18:√3/2=36:√3•2=12√3

              V=S•h:3

Формула площади правильного треугольника S= \frac{ a^{2} \sqrt{3} }{4}

S=144*3* \frac{ \sqrt{3} }{4} =36•3•√3 см² 

V=36•3•√3•12:3=432√3 см³

                     * * * 

Объём цилиндра равен произведению площади основания на высоту. Пусть основание вписанной призмы – ∆ АВС, АВ - гипотенуза, АС =m, угол АВС=f.

.Центр окружности, описанной вокруг прямоугольного треугольника, лежит в середине гипотенузы, а радиус равен её половине. 

⇒ радиус основания цилиндра равен половине АВ. 

АВ=m:sin f

R=0,5m:sin f

V=πr²•h

V= \frac{0,25m ^{2} }{sin ^{2} f} *h


Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вравнобедренном прямоугольном треугольнике гипотенуза равна 3√2 см. найдите острые углы и катеты
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Elvira-Natalya
nrostovtseva142
dianabuchkina
armentamada1906
elenasnikitina84
dilovarnazarov1986
Наталья Юрьевич1228
axo-geo
myrisik2490
NikonA83
Kulikov1065
elenakarpova709
SAMSCHOOL96
Игорь Андрей
bereza81