italiankarest
?>

Найдите диагональ прямоугольника, если его стороны равны 2.4 дм и 7 см

Геометрия

Ответы

Kharkina1328
2,4 дм = 24 см
Находится по теореме Пифагора:
\sqrt{24^{2}+7^{2}}=\sqrt{576+49}=\sqrt{625}=25 см диагональ
turoverova5
Пусть нам дана правильная четырехугольная пирамида KABCD
Проведем KO перпендикулярно плоскости ABCD
Проведем диагональ AС в ABCD
ABCD - квадрат(т.к пирамида правильная) ⇒ AB=BC=CD=AD
Рассмотрим ΔACD - прямоугольный
По теореме Пифагора:
AC²=AD²+CD²
Т.к. AD=CD Можно записать так:
AC²=2AD²
AC=√2AD²=√2*4²=√2*16=√32=4√2
AO=OC=2√2 - т.к. диагонали квадрата точкой пересечения делятся пополам
Рассмотрим ΔAOK - прямоугольный
По теореме Пифагора:
AK²=AO²+KO²
KO²=AK²-AO²
KO=√AK²-AO²=√17-8=√9=3
KO=H=3
Sосн=AD²=4²=16
V=Sосн*H/3=16*3/3=16
ответ: 16
(Я правильно понял, что боковое ребро равно √17?)
SitnikovYurii5
Пусть нам дана правильная четырехугольная пирамида KABCD
Проведем KO перпендикулярно плоскости ABCD
Проведем диагональ AС в ABCD
ABCD - квадрат(т.к пирамида правильная) ⇒ AB=BC=CD=AD
Рассмотрим ΔACD - прямоугольный
По теореме Пифагора:
AC²=AD²+CD²
Т.к. AD=CD Можно записать так:
AC²=2AD²
AC=√2AD²=√2*4²=√2*16=√32=4√2
AO=OC=2√2 - т.к. диагонали квадрата точкой пересечения делятся пополам
Рассмотрим ΔAOK - прямоугольный
По теореме Пифагора:
AK²=AO²+KO²
KO²=AK²-AO²
KO=√AK²-AO²=√17-8=√9=3
KO=H=3
Sосн=AD²=4²=16
V=Sосн*H/3=16*3/3=16
ответ: 16
(Я правильно понял, что боковое ребро равно √17?)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите диагональ прямоугольника, если его стороны равны 2.4 дм и 7 см
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Александра_Наталья1417
olkay
Sergei Gaishun
albina6580
GoncharenkoKuzmin
strannaya2018
zbellatriks
nailya-abdulova25
Paradismebel
nmakarchuk
buhtovarish
sashakrotova943
AkimovaI1608
teya07
fucingprinces30