orion-inginiring7807
?>

Точки а, в и с делят окружность на три равные дуги ав, вс, са. чему равна градусная мера этих дуг?

Геометрия

Ответы

rezh2009766
градусная мера искомых дуг =  360°:3=120°

(градусная мера дуги =градусной мере соответствующего центрального угла. вся окружность - 360 °)
simonovaliubov5852
Дано:
Координаты т. А         Координаты т. В         Координаты т. С
ax    ay    az                 bx    by    bz                   cx    cy      cz  
3     -1      2                 -1      4      1                    -5      3      -4.

1) Расстояние между точками.
d = v ((х2 - х1 )² + (у2 - у1 )² + (z2 – z1 )²)
АВ           ВС           АС                   Периметр     Полупериметр      
42            42          116    квадрат
6,4807   6,4807   10,7703              23,7318             11,8659
   Вектор АВ   -4     5    -1     |AB| = √(16+25+1) = √42 = 6,4807
   Вектор ВС   -4    -1    -5     |BC| = √(16+1+25) = √42 = 6,4807
   Вектор АС   -8     4    -6     |AC| = √(64+16+36) = √116 = 10,7703.
                                                                                         Р = 23,7318.

2) Площадь по формуле Герона.
S = √(p(p-a)(p-b)(p-c).
Подставив данные, получаем:
Треугольник АВС
a(ВС)       b(АС)      c(АВ)        p             2p               S
6,4807  10,7703   6,4807   11,8659    23,7318      19,4165
cos A = 0,830949     cos B = -0,3809523        cos С = 0,830949
Аrad = 0,5899851     Brad = 1,961622457       Сrad = 0,5899851
Аgr = 33,8036561     Bgr = 112,3926878          Сgr = 33,803656/
Площадь равна  19,4165 кв.ед.
roma8

1.

P(4;3), T(-2;5).

Используем уравнение прямой, проходящей через две точки.

Если даны две точки A(x₁; y₁) и B(x₂; y₂), тогда уравнение прямой, проходящей через эти две точки будет

\frac{x-x_1}{x_2 - x_1} = \frac{y-y_1}{y_2 - y_1}

То есть у нас даны две точки P(4;3) и T(-2;5), уравнение прямой, проходящей через них будет

\frac{x-4}{-2-4} = \frac{y-3}{5-3}

\frac{x-4}{-6} = \frac{y-3}{2}

-\frac{x-4}{3} = y-3

-(x-4) = 3·(y-3),

4 - x = 3y - 9,

3y + x - 9 - 4 = 0,

x + 3y - 13 = 0.

Можно сделать проверку: подставим координаты каждой точки в уравнение и проверим выполнение равенства.

P(4;3):

4 + 3·3 - 13 = 4 + 9 - 13 = 0. Верно.

T(-2;5):

(-2) + 3·5 - 13 = -2 + 15 - 13 = 0. Верно.

ответ. x + 3y - 13 = 0.

2.

x + 3y - 13 = 0,

Уравнение оси Ox (оси абсцисс): y = 0. Подставим это в уравнение прямой и получим x + 3·0 - 13 = 0, ⇔ x = 13.

Итак, пересечение прямой с осью Ox дает точку (13;0).

Уравнение оси Oy (оси ординат): x = 0. Подставим это в уравнение прямой и получим 0 + 3y - 13 = 0, ⇔ y = \frac{13}{3}.

Итак, пересечение прямой с осью Oy в точке (0; \frac{13}{3}).

3.

Дана прямая x - y + 2 = 0 и окружность (x-2)² + (y-1)² = 9.

Чтобы найти координаты точек пересечения решим систему двух уравнений на два неизвестных.

Из уравнения прямой находим y = x+2, подставим это в уравнение окружности: (x-2)² + ( x+2 - 1)² = 9,

(x-2)² + (x+1)² = 9,

x² - 4x + 4 + x² + 2x + 1 = 9,

2x² - 2x + 5 - 9 = 0,

2x² - 2x - 4 = 0,

x² - x - 2 = 0,

D = (-1)² - 4·1·(-2) = 1 + 8 = 9 = 3²,

x = \frac{1 \pm 3}{2}

x_1 = \frac{1 - 3}{2} = \frac{-2}{2} = -1

y_1 = x_1 + 2 = -1 + 2 = 1

Итак, координаты первой точки (-1; 1).

x_2 = \frac{1 + 3}{2} = \frac{4}{2} = 2.

y_2 = x_2 + 2 = 2 + 2 = 4

Итак, координаты второй точки (2; 4).

ответ. (-1; 1), (2; 4).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Точки а, в и с делят окружность на три равные дуги ав, вс, са. чему равна градусная мера этих дуг?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

klkkan
buriginast5
muzeynizhn
blagorodovaanna375
s2010av565
vbg238
strelnikov-aa
fedoseevgleb
ksen1280
magazin7452834
satinvova
mausgaly
lsyrbu
elivanova
metrikajulia