mvv-155
?>

Длина одной из пересекающихся хорд 16 см. вторая хорда точкой пересечения делится на отрезки 6 см и 8 см. вычислите длины отрезков, на которые делится первая хорда этой точкой

Геометрия

Ответы

druzhbamagazin2457
Произведение отрезков одной хорды = произведению отрезков другой хорды. Пусть длина первой хорды х см, тогда её половина х/2 см. Составим уравнение:
х/2 *х/2 = 4*16
х²/4 = 64
х² = 256
х=16.
Итак, длина первой хорды равна 16см.
vera-classic75

треугольник DBC-равнобедренний,так как угол С=35 градусов и угол DBC 35 градусов.

Из этого следует,что в этом труегольнике больший угол BDC,значит, сторона ВС в этом треугольнике самая большая(напротив большего угла лежит большая сторона)

В треугольнике АВD большая сторона BD(так как угол А=75 градусов-самый большой)

А BD=DC(так как треугольник DBC-равнобедренний) и эти стороны меньше ВС.

Из всего этого следует,что AD<BC,так как большая сторона(BD) треугольника ABD меньше большой стороны(BC) треугольника DBC.

Значит и меньшая сторона(AD) треуг. ABD будет меньше большей стороны(BD) треугольника ABD.

AD<BC

gorod7
1.
а)
Так как две боковые грани перпендикулярны плоскости основания, то и ребро, по которому они пересекаются, МС, так же перпендикулярно плоскости основания.
Пусть Н - середина гипотенузы АВ.
Тогда СН - медиана и высота равнобедренного треугольника,
СН⊥АВ. СН - проекция МН на плоскость основания, тогда и МН⊥АВ по теореме о трех перпендикулярах.
∠МНС = 45° - линейный угол двугранного угла между боковой гранью МАВ и плоскостью основания.
СН = АВ/2 = 2√2 см, так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине.
ΔМСН прямоугольный равнобедренный (∠МНС = 45°), значит
МС = СН = 2√2 см

АВ = АС√2 как гипотенуза равнобедренного треугольника,
АС = ВС = АВ/√2 = 4 см
ΔМСА: ∠МСА = 90°, по теореме Пифагора
             МА = √(МС² + АС²) = √(8 + 16) = √24 = 2√6 см
ΔМСА = ΔМСВ по двум катетам (АС = ВС по условию, МС - общий), ⇒
МВ = МА = 2√6 см

б) Sбок = Smac + Smab + Smcb
Smab = Smcb = 1/2 · MC ·AC = 1/2 · 2√2 · 4 = 4√2 см²
Smab = 1/2 · AB · MH
MH = MC√2 = 2√2 · √2 = 4 см как гипотенуза равнобедренного треугольника,
Smab = 1/2 · 4√2 · 4 = 8√2 см²
Sбок = 4√2 + 4√2 + 8√2 = 16√2 см²

2.
Пусть М - середина AD.
Соединим точки М и С, так как они лежат в одной грани. МС - отрезок сечения.
Проведем МК - среднюю линию ΔАА₁D.
Тогда МК║А₁D. МК - отрезок сечения.
Параллельные грани пересекаются по параллельным прямым, поэтому в грани ВВ₁С₁С проведем диагональ В₁С, которая параллельна А₁D, а значит и МК.
В₁СМК - искомое сечение (А₁D║МК, значит параллельна и плоскости сечения, и сечение проходит через заданные точки).

Так как МК║В₁С, а КВ₁∦МС, то сечение - трапеция.
Так как ΔКА₁В₁ = ΔMDC по двум катетам, то КВ₁ = МС, ⇒ трапеция равнобедренная.
В₁С = а√2 как диагональ квадрата,
МК = а√2/2 как средняя линия ΔАА₁D.
Из ΔMDC по теореме Пифагора
МС = √(MD² + DC²) = √(a²/4 + a²) = a√5/2
Трапеция равнобедренная, поэтому
СН = РВ₁ = (СВ₁ - МК)/2 = (а√2 - а√2/2)/2 = а√2/4
Из треугольника СМН по теореме Пифагора
СН = √(СМ² - СН²) = √(5a²/4 - 2a²/16) = √(18a²/16) = 3a√2/4
Sсеч = (CB₁ + MK)/2 · CH = (a√2 + a√2/2)/2 · 3a√2/4 = 3a√2/4 · 3a√2/4
Sсеч = 9a² · 2 / 16 = 9a²/8

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Длина одной из пересекающихся хорд 16 см. вторая хорда точкой пересечения делится на отрезки 6 см и 8 см. вычислите длины отрезков, на которые делится первая хорда этой точкой
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ИльяАндреевич-Мария
vera141187
rinat
spz03
mpityk
Daniil1945
oksanakv1950
osnovnoisklad3551
edubenskaya
VdoffOlga
Pavlushina-Novikova
krimenu5033
ivan-chay19
archala
rina394992