Если известны длины всех сторон , то высоту найдем по формуле
h = 2/a √p(p-a)(p-b)(p-c),
где h - длина высоты треугольника, p - полупериметр, a - длина стороны, на которую падает высота, b и c - длины двух других сторон треугольника.
1) р=(17+65+80):2=81
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/80 * √(81*64*16*1) = 1/40 * √82944 = 1/40 * 288 = 7,2
2) р=(8+6+4):2=9
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/8 * √(9*1*3*5) = 1/4 * √135 = 1/4 * 3√15= 0,75√15
3) р=(24+25+7):2=28
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/25 * √(28*4*3*21) = 2/25 * √7056 = 2/25 * 84 = 6,72
4) ) р=(30+34+16):2=40
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/34 * √(40*10*6*24) = 1/17 * √57600 = 1/17 * 240 = 1 17/70.
1)Диагональ квадрата
2)Такого правильного многоугольника не существует
3)Периметр ромба 60
Объяснение:
1)Сторона квадрата это два радиуса, то есть a = 2r = 2 * 5 = 10
По теореме Пифагора, диагональ = =, где а - сторона квадрата
2) Сумма улов n-угольника s = 180(n - 2)
1600 = 180(n - 2);
1600 = 180n - 360;
1960 = 180n;
196 = 18n;
n = 10,8 а так как n не является натуральным числом то такого многоугольника не существует
3)Так ромб частный случай паралеллограмма то его диагонали точкой пересечения делятся пополам, а свойству ромба его диагонали перпендикулярны, тогда по теореме Пифагора a =
(a - сторона ромба )
По свойству ромба все его стороны равны тогда P ромба = 4a
= 4 * 15 = 60
Поделитесь своими знаниями, ответьте на вопрос:
Много (можно без вычислений) 1-треугольники abc и kmp равны (∠a=90∘ известно, что ∠bca=38∘. определите градусную меру угла ∠mpk. 2-в треугольника abc ∠a=90∘, ∠b=15∘, bc=10. в треугольника kmp ∠k=90∘, ∠m=15∘, mp=10. выберите правильное утверждение. 1)ac=km 2)ac=kp 3)ab=kp 4)ac=mp 3-прямоугольный треугольник с острым углом α равен прямоугольному треугольнику с острым углом20∘. каким может быть значение α ? (выберите все возможные варианты) 30∘ 10∘ 20∘ 90∘ 70∘