Үшбұрыштың теңдік белгілері.
1. Егер бірінші үшбұрыштың екі қабырғасы мен олардың арасындағы бұрышы екінші үшбұрыштың сәйкес екі қабырғасы мен арасындағы бұрышқа тең болса, онда бұл үшбұрыштар тең болады.
2. Егер бірінші үшбұрыштың бір қабырғасы және оған іргелес жатқан екі бұрышы екінші үшбұрыштың сәйкес қабырғасы мен оған іргелес жатқан екі бұрышына тең болса, онда бұл үшбұрыштар тең болады.
3. Егер бір үшбұрыштың үш қабырғасы екінші үшбұрыштың сәйкес үш қабырғасына тең болса, онда бұл үшбұрыштар тең болады.
Объяснение:
56: ∠C = 43°; ВС = 14
57: 87
58: 11, 52, 44
59: 16
Объяснение:
56: По условию, треугольники равны. В равных треугольниках все соответственные элементы равны. Т.к. ∠А = ∠D, а ∠В = ∠Е, то ∠С = ∠F = 43°. Все равные между собой углы соответственны ⇒ ВС соответствует ЕF ⇒ ВС = ЕF = 14.
57: Назовем стороны треугольника х, х + 18, (х + 18) : 2. Сторона х это та сторона, которая по условию рана 24. Значит, х + 18 = 24 + 18 = 42, а (х + 18) : 2 = 42 : 2 = 21. Периметр треугольника равен сумме его сторон ⇒ Р = 24 + 42 + 21 = 87.
58: Назовем стороны треугольника х, х + 41 и 4х соответственно. По условию периметр равен 107. Составим уравнение: 4х + х + х + 41 = 107. Решим его: 6х = 107 - 41 ⇒ 6х = 66 ⇒ х = 11. Таким образом, х + 41 = 52, 4х = 44. Стороны равны 11, 52, 44
59: Рассмотрим ΔАВЕ и ΔВЕС. ВЕ - общая сторона. АЕ = ЕС по св-ву медианы. Т.к. периметры ΔАВЕ и ΔВЕС равны, а ВЕ общая и АЕ = ЕС, то АВ = ВС. ΔАВЕ = ΔВЕС по трем сторонам. В равных треугольниках все соответственные элементы равны. Также и АВ = ВС = 6. Периметр ΔАВD > периметра ΔАDC на 2. Периметр ΔАВD = АВ + ВD + DА. Периметр ΔАDС = АВ + ВD + DА - 2 ⇒ AD + DC + AC. Т.к. ВD общая, а по св-ву медианы ВD = DС, то АС = АВ - 2 = 4. Периметр ΔАВС = 6 + 6 + 4 = 16
Поделитесь своими знаниями, ответьте на вопрос:
16. из точки a к плоскости а проведены наклонные ав и ас. найдите расстояние от точки а до плоское а, если ав=20 см, ас= 15 см, а длины проекций ав и ас на плоскость а относятся как 16 : 9 17. концы отрезка ав лежат в двух параллельных плоскостях. найдите длину отрезка ав, если он образует со своей проекцией на одну из данных плоскостей угол 45°, а расстояние между данными плоскостями равно 4√(2) дм.
BK/CK=16/9
CK=x
BK=16/9*x
20^2-256/81x^2=225-x^2
400-225=x^2(256/81-1)
175=(175/81)x^2
x=9
АК^2=225-81=144
AK=12 см
расстояние от точки А до плоское а равно 12 см
17. AB=AC/sin45=4√2/((√2)/2)=8 cм